Investigating energy management of hybrid vehicle technologies to promote sustainable mobility paradigms

Main Article Content



Analysing contemporary passenger cars' energy consumption and environmental impacts is a critical research area. This is particularly relevant in urban transport's dynamic and unpredictable environment, where vehicles' fuel consumption and emissions vary considerably. An in-depth understanding of such fluctuations is essential for innovative, efficient, environmentally friendly vehicle technology. In the present research, I investigated a 1.4-litre petrol hybrid vehicle, focusing on its energy supply chain under real-world urban driving conditions. The study focuses on policies that can promote the development of sustainable mobility, improve energy efficiency and reduce environmental pollution. The results can help to optimise hybrid vehicle technologies in an environmentally conscious way and explore possible new avenues for sustainable transport solutions.

Article Details

How to Cite
ZSOMBOK, I. (2024). Investigating energy management of hybrid vehicle technologies to promote sustainable mobility paradigms. Cognitive Sustainability, 3(1).


Bortz, J. (2005). Statistik Human Sozialwissenschaftler 6th edition. Springer Verlag, Berlin.

Duhr, P., Christodoulou, G., Balerna, C., Salazar, M., Cerofolini, A., Onder, C. H. (2021). Time-optimal gearshift and energy management strategies for a hybrid electric race car. Applied Energy. 282, Part A. 115980. DOI:

Hartlieb, S (2009).: Untersuchung von Fahrversuchsdaten auf demographisch signifikante Merkmale zur Identifikation von Fahrern und Situationen, Studienarbeit am Institut für Verbrennungsmotoren und Kraftfahrwesen, Universität Stuttgart, November 2009

Li, C., Xu, X., Zhu, H., Gan, J., Chen, Z., Tang, X. (2024). Research on car-following control and energy management strategy of hybrid electric vehicles in connected scene. Energy. 293, 130586. DOI:

Meszaros, F., & Torok, A. (2014). Theoretical investigation of emission and delay based intersection controlling and synchronising in Budapest. Periodica Polytechnica Transportation Engineering, 42(1), 37-42. DOI:

Tollner D., Zöldy M. (2023). Dynamic Data extraction from vehicles through OBD connector. 2023 IEEE 2nd International Conference on Cognitive Mobility (CogMob). 189–194.

Török, Á. (2011). Investigation of road environment effects on choice of urban and interurban driving speed. International Journal for Traffic and Transport Engineering, 1(1), 1-9.

Yeom, K. (2022). Learning model predictive control for efficient energy management of electric vehicles under car following and road slopes. Energy Reports. 8, Supplement 15. 599–596. DOI:

Zhang, H., Peng, J., Dong, H., Tan, H., Ding, F. (2023). Hierarchical reinforcement learning based energy management strategy of plug-in hybrid electric vehicle for ecological car-following process. Applied Energy. 333, 120599. DOI:

Zöldy, M., Baranyi, P. (2023). Definition, Background and Research Perspectives Behind The Cognitive Mobility Concept. Infocommunications Journal, Special Issue: Internet of Digital & Cognitive realities. 35–40. DOI:

Zöldy, M., Zsombók, I. (2019). Influence of external environmental factors on range estimation of autonomous hybrid vehicles. System Safety: Human-Technical Facility-Environment, 1(1), 472-480. DOI:

Zsombok I. (2021) Járművek fogyasztása és hatótáv becslő rendszerei , OGÉT 2021.04.18. URL:

Zsombok, I., Zöldy, M.(2023). Modelling, Simulation and Validation of Hybrid Vehicle Fuel Consumption. Acta Polytechnica Hungarica. 20(5). 61–74. DOI: