Implementation of vehicle simulation model in a modern dynamometer test environment
Main Article Content
Abstract
The rapid development of digital technology makes it possible to expand the sustainability of the transport sector. With the development of digitalization, virtual tests play an increasingly important role in product design. With the development of computer technology, there is a more accurate and faster opportunity to save time, energy, and costs before the product is introduced to the market. In the early stages, vehicle simulation can be effectively used, which is a cost- and time-efficient solution. This study presents the transfer of a vehicle simulation model to an internal combustion engine dynamometer. Dynamometers allow the behavior of the real engine to be tested before the complete vehicle is available. Building the simulation model of the complete system including the dynamometer and the engine makes it possible to setup the variables of the real test environment resulting in decreased time and cost on the dynamometer. Furthermore, the system constructed in this way can be suitable for carrying out the tests that were previously carried out on the entire vehicle. With a vehicle simulation model, the level of simulation can be changed as needed during development until the developed real vehicle is fully realized.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access). As soon as the paper is accepted, finally submitted and edited, the paper will appear in the "OnlineFirst" page of the journal, thus from this point no other internet-based publication is necessary.
References
Petters J. (2019). RDE-Optimierung mittels Abbildung verschiedener Fahrercharakteristiken. In: Liebl, J. (Hrsg.). Simulation und Test 2018. Springer Vieweg, Wiesbaden. DOI: https://doi.org/jdnf
Zöldy, M., Baranyi, P. (2021). Cognitive Mobility – CogMob. In: Nikodem, J., Klempous, R. (eds). 12th IEEE International Conference on Cognitive Infocommunications (CogInfoCom 2021). Proceedings IEEE. 921–925.
Baranyi, P., Csapo, A. (2010). Cognitive Infocommunications: CogInfoCom. 2010 11th International Symposium on Computational Intelligence and Informatics (CINTI). 141–146. DOI: https://doi.org/c88cfk
Dietrich M., Rupfle, J. (2020). Der Antriebsprüfstand als Plattform für die RDE-Emissionierung. In: Liebl, J. (Hrsg..). Experten-Forum Powertrain: Simulation und Test 2019. Springer Vieweg, Wiesbaden. 137–152. DOI: https://doi.org/jdng
Pfister F. (2019). Connected Testing of ADAS and Powertrain Functions on Integration Test Beds. 8th International Symposium on Development Methodology: IPG Automotive GmbH.
Jiang S., Smith, M., Kitchen, J., Ogawa (2009). Development of an Engine-in-the-loop Vehicle Simulation System in Engine Dynamometer Test Cell. SAE Technical Paper. DOI: https://doi.org/cfddx8
Nyerges, Á, Zöldy, M. (2020). Verification and Comparison of Nine Exhaust Gas Recirculation Mass Flow Rate Estimation Methods. Sensors. 20(24). 7291. DOI: https://doi.org/f9wg
Bauer, S., Beidl, C., Laubis, K., Keuth, N. (2019). RDE Evaluation by Efficient Fleet Data Management and Advanced Analytics. 8th International Symposium on Development Methodology: IPG AutomotiveGmbH.
Jung, T., Kötter, M., Schaub, J. Quérel, C., Thewes, S., Hadj-amor, H., Picard, M., Lee, S-Y. (2019). Engine-in-the-Loop: A Method for Efficient Calibration and Virtual Testing of Advanced Diesel Powertrains, Simulation und Test 2018. Springer Fachmedien, Wiesbaden. DOI: https://doi.org/jdnh
Teuschl, G., Jung, C., Ellinger, R., Ebner, P., Huss, A., Merl, R. (2021). Model Based xEV Test and Calibration. Benefits and Limitations. In: Liebl, J., Beidl, C., Maus, W. (Hrsg.). Internationaler Motorenkongress 2021. Wiesbaden : Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature, DOI: https://doi.org/jdnj
Yao, L., Wu, J., Wang, Y., Liu, C. (2014). Research on vehicle integrated control algorithm based on MATLAB and CANoe co-simulation. 2014 IEEE Conference and Expo Transportation Electrification Asia-Pacific (ITEC Asia-Pacific). 1–5. DOI: https://doi.org/jdnk