How to use cognitive tools to increase sustainability of elderly people’s mobility?

Main Article Content

Hang Cao

Abstract

Aging of societies is a major international trend, thus effective and long-term development of activities for the elderly is an important issue. Vehicles must improve the range of activities of older people and increase their life trajectory beyond their age limits. With human participation, autonomous vehicles need to improve driving capabilities to drive safely in traffic scenarios and implement sustainable solutions. The discussion focuses on the impact on driving behavior, the functionality of vehicle sensors, and the interaction with traffic road users. This paper illustrates that autonomous driving tasks can benefit aging drivers due to vehicle sensors and systems, and road users when dealing with new or unexpected traffic situations. Identifying cognitive changes and relationships is important better to understand the road environment’s cognitive processes and behaviors.

Article Details

How to Cite
Cao, H. (2022). How to use cognitive tools to increase sustainability of elderly people’s mobility?. Cognitive Sustainability, 1(4). https://doi.org/10.55343/cogsust.26
Section
Articles

References

Alyamani, H. J., Alsharfan, M., Kavakli-Thorne, M., Hessam, J. (2017). "Towards a Driving Training System to Support Cognitive Flexibility." PACIS 2017 Proceedings. 87. URL: https://aisel.aisnet.org/pacis2017/87 (Downloaded: 6 August 2022)

Anderson, S., Rizzo, M., Shi, Q., Uc, D., Dawson, J. (2005). Cognitive Abilities Related to Driving Performance in a Simulator and Crashing on the Road. Driving Assessment Conference. 286–292. DOI: https://doi.org/10.17077/drivingassessment.1173

Anstey, K. J., Wood, J., Lord, S., Walker, J. G. (2005). Cognitive, sensory and physical factors enabling driving safety in older adults. Clinical Psychology Review. 25(1), 45–65. DOI: https://doi.org/10.1016/j.cpr.2004.07.008

Baranyi, P., Gedeon, T. D., Koczy, L. T. (1996). "A general interpolation technique in fuzzy rule bases with arbitrary membership functions." 1996 IEEE International Conference on Systems, Man and Cybernetics. Information Intelligence and Systems (Cat. No.96CH35929). 1, 510–515. DOI: https://doi.org/10.1109/ICSMC.1996.569844

Bergen G., West B. A., Luo F., Bird D. C., Freund K., Fortinsky R. H., Staplin L. (2017). How do older adult drivers self-regulate? Characteristics of self-regulation classes defined by latent class analysis, Journal of Safety Research, Volume 61, 2017, Pages 205-210, ISSN 0022-4375, DOI: https://doi.org/10.1016/j.jsr.2017.01.002

Cao, H., Zöldy, M. (2020). "An Investigation of Autonomous Vehicle Roundabout Situation." Periodica Polytechnica: Transportation Engineering. 48(3), 236–241. DOI: https://doi.org/10.3311/PPtr.13762

Cao, H., Zöldy, M. (2021). MPC Tracking Controller Parameters Impacts in Roundabouts. Mathematics. 9(12), 1394. DOI: https://doi.org/10.3390/math9121394

Chen, C., Zhao, X., Yao, Y., Zhang, Y., Rong, J., Liu, X. (2018). "Driver's Eco-Driving Behavior Evaluation Modeling Based on Driving Events. Journal of Advanced Transportation. Article ID 9530470. DOI: https://doi.org/10.1155/2018/9530470

Chen, S., Jian, Z., Huang, Y., Chen, Y., Zhuoli, Z. Zheng, N. (2019). Autonomous driving: cognitive construction and situation understanding. Science China Information Sciences. 62, 81101. DOI: https://doi.org/10.1007/s11432-018-9850-9

Chater, N., Misyak, J., Watson, D., Griffiths, N., Mouzakitis, A. (2017). Negotiating the Traffic: Can Cognitive Science Help Make Autonomous Vehicles a Reality?. Trends in Cognitive Sciences. 22. DOI: https://doi.org/ 10.1016/j.tics.2017.11.008

Cooper, J. M., Wheatley, C. L., McCarty, M. M., Motzkus, C. J., Lopes, C. L., Erickson, G. G., Baucom, B., Horrey, W. J., Strayer, D. L. (2020). Age-Related Differences in the Cognitive, Visual, and Temporal Demands of In-Vehicle Information Systems. Frontiers in psychology, 11, 1154. DOI: https://doi.org/10.3389/fpsyg.2020.01154

Dawes, R., Messick, D. (1980). Social Dilemmas. International Journal of Psychology. 35. 111-.DOI: https://doi.org/10.1146/annurev.ps.31.020180.001125

Donoghue, O. A., Horgan, N. F., Savva, G. M., Cronin, H., O'Regan, C., Kenny, .R. A. (2012). Association between timed up-and-go and memory, executive function, and processing speed. Journal of the American Geriatrics Society. 60(9), 1681–1686. DOI: https://doi.org/10.1111/j.1532-5415.2012.04120.x

Du, N, Haspiel, J., Zhang, Q., Tilbury, D., Pradhan, A., Yang, X. J., Robert, L. (2019). Look Who's Talking Now: Implications of AV's Explanations on Driver's Trust, AV Preference, Anxiety and Mental Workload. Transportation Research Part C: Emerging Technologies. 104, 428–442. DOI: https://doi.org/10.1016/j.trc.2019.05.025

Evans, G. W., Brennan, P. L., Skorpanich, M. A., & Held, D. (1984). Cognitive mapping and elderly adults: verbal and location memory for urban landmarks. Journal of gerontology, 39(4), 452–457. DOI: https://doi.org/10.1093/geronj/39.4.452

Felix B. G., Nápoles, G., Falcon, R., Froelich, W., Vanhoof, K., Bello, R. (2019). A Review on Methods and Software for Fuzzy Cognitive Maps. Artificial Intelligence Review. 52. DOI: https://doi.org/10.1007/s10462-017-9575-1

Fatiha, M., Abdelghani, C. (2017). A cognitive and metacognitive approach for exploring link between urban transport environment and driver behaviour: case of roundabout crossed by tramway line. MATEC Web Conference. 124, 01005. DOI: https://doi.org/10.1051/matecconf/201712401005

Jayaraman, S., Creech, C., Robert, L., Tilbury, D., Yang, X. J., Pradhan, A., Tsui, K. (2018). Trust in AV: An Uncertainty Reduction Model of AV-Pedestrian Interactions. DOI: https://doi.org/10.1145/3173386.3177073

Harms, I. M., Burdett, B. R. D., Charlton, S. G. (2021). The role of route familiarity in traffic 'participants' behaviour and transport psychology research: A systematic review. Transportation Research Interdisciplinary Perspectives. 9, 100331. DOI: https://doi.org/10.1016/j.trip.2021.100331

Hoch, S., Schweigert, M., Althoff, F., Rigoll, G. (2007). The BMW SURF Project: A Contribution to the Research on Cognitive Vehicles. 2007 IEEE Intelligent Vehicles Symposium. DOI: https://doi.org/10.1109/IVS.2007.4290197

Herriotts, P. (2005). Identification of vehicle design requirements for older drivers, Applied Ergonomics, Volume 36, Issue 3, 2005, Pages 255-262, ISSN 0003-6870, DOI: https://doi.org/10.1016/j.apergo.2005.01.002

Kim, B. J., Bishu, R. (2004). Cognitive abilities in driving: differences between normal and hazardous situations. Ergonomics. 47(10), 1037–1052. DOI: https://doi.org/10.1080/00140130410001686285

Knoefel, F., Wallace, B., Goubran, R., Sabra, I., Marshall, S. (2019). Semi-Autonomous Vehicles as a Cognitive Assistive Device for Older Adults. Geriatrics . 4(4), 63. DOI: https://doi.org/10.3390/geriatrics4040063

Karthaus, M., Falkenstein, M. (2016). Functional Changes and Driving Performance in Older Drivers: Assessment and Interventions. Geriatrics, 1 (2), s. 12. DOI: https://doi.org/10.3390/geriatrics1020012

Li, A., Sun, L., Zhan, W., Tomizuka, M., Chen, M. (2020). Prediction-Based Reachability for Collision Avoidance in Autonomous Driving. Preprint. DOI: https://doi.org/10.48550/arXiv.2011.12406

Lekić, M., Rogić, K., Boldizsár, A., Zöldy, M., Török, Á. (2019). Big Data in Logistics, Periodica Polytechnica Transportation Engineering. 49(1), 60–65. DOI: https://doi.org/10.3311/PPtr.14589

Motoyuki, K., Kazunori, H., Juhei, T., Ayuko, I., Hideharu, D. (2006). Cognitive and physical factors in changes to the automobile driving ability of elderly people and their mobility life: Questionnaire Survey in Various Regions of Japan. IATSS Research. 30(1), 38–51. DOI: https://doi.org/10.1016/S0386-1112(14)60154-0

Marquié, J., Gabaude, C. (2010). Aging, transportation and mobility: current issues. Le travail humain, 73, 1-5. DOI: https://doi.org/10.3917/th.731.0001

Rapoport, R.N. (Ed.). (2002). Community as Doctor: New perspectives on a therapeutic community (1st ed.). Routledge. DOI: https://doi.org/10.4324/9781315013893

Reibnitz, U. (1988). Scenario Techniques. McGraw-Hill, Hamburg.Sánchez-García, Raul, Araújo, D. (2021). Driving in Roundabouts: Why a Different Theory of Expert Cognition in Social Driving Is Needed for Self-driving Cars. Journal of Expertise. 4(1). URL: https://journalofexpertise.org/articles/volume4_issue1/JoE_4_1_Sanchez-Garcia_Araujo.pdf (Downloaded: 6 August 2022)

SHIRAI, S., TAKAHASHI, Y. (2018). Personal Mobility Vehicle User's Psychological Reaction to Surrounding People. 2018 18th International Conference on Control, Automation and Systems (ICCAS), 2018, pp. 1730-1735.

Schaie K. W., Pietrucha M. (2000). Mobility and transportation in the elderly. Springer Pub. Retrieved August 24 2022 from http://site.ebrary.com/id/10265417.

Sims, R. V., McGwin, G., Jr., Pulley, L., Roseman, J. M., Owsley, C. (1999). Mobility Impairments in Crash-Involved Older Drivers. Annual Proceedings / Association for the Advancement of Automotive Medicine, 43, 203–212.

Smith, D.B.D., Meshkati, N., Robertson, M.M. (1993). The older driver and passenger. B. Peacock, W. Karwowski (Eds.), Automotive Ergonomics, Taylor and Francis, London (1993), pp. 453-471

Strayer, D.L., Cooper, J.M., Goethe, R.M. et al. Assessing the visual and cognitive demands of in-vehicle information systems. Cogn. Research 4, 18 (2019). DOI: https://doi.org/10.1186/s41235-019-0166-3

O'Connor, M. L. (2020). A Comprehensive Overview of Mobility and Aging in the Year 2020 (and beyond). In Amornyotin, S. (ed.), Update in Geriatrics. IntechOpen. DOI: https://doi.org/10.5772/intechopen.93939

Zöldy, M., Baranyi, P. (2021). Cognitive Mobility - CogMob. 12th IEEE International Conference on Cognitive Infocommunications, Online on MaxWhere 3D Web, 2021.

Zöldy, M., Zsombók, I.(2018). Modelling fuel consumption and refuelling of autonomous vehicles. MATEC Web Conference. 235, 00037. DOI: https://doi.org/10.1051/matecconf/201823500037

Zöldy, M., Szalay, Z., Tihanyi, V. (2021). Challenges in homologation process of vehicles with artificial intelligence. Transport. 35(4), 447–453. DOI: https://doi.org/10.3846/transport.2020.12904

Zhang, Q., Yang, X. J., Robert, L. P. Jr. (2021). Drivers' Age and Automated Vehicle Explanations. Sustainability. 13(4), 1948. DOI: https://doi.org/10.3390/su13041948

Zhang, P., Jetter, A. (2018). "A Framework for Building Integrative Scenarios of Autonomous Vehicle Technology Application and Impacts, using Fuzzy Cognitive Maps (FCM)." 2018 Portland International Conference on Management of Engineering and Technology (PICMET). 1–14. DOI: https://doi.org/10.23919/PICMET.2018.8481747

Zear, A., Singh, P., Singh, Y. (2016). Intelligent Transport System: A Progressive Review. Indian Journal of Science and Technology. 9.DOI: 10.17485/ijst/2016/v9i32/100713

Zhang, X., Zhou, M., Liu, H. et al. (2020). A Cognitively Inspired System Architecture for the Mengshi Cognitive Vehicle. Cogn Comput 12, 140–149. DOI: https://doi.org/10.1007/s12559-019-09692-6