Effects of Oxymethylene Ether in a Commercial Diesel Engine
Main Article Content
Abstract
Oxymethylen Ether (OME) is a promising alternative fuel for diesel engines. It can be produced sustainably, and its combustion is clean and efficient. This study investigates the effects of different OME3-5 mixtures on emissions and combustion. The measurements were done on a four-cylinder common rail commercial diesel engine equipped with an exhaust gas recirculation system (EGR). Five different blends of OME3-5 and B7 diesel were applied with 0, 7, 15, 25 and 45 vol% OME3-5 content at four loads. The NOx–PM trade-off was investigated at 11 EGR rates for each mixture at each load. Increasing OME3-5 mixing ratio reduced the PM emission, improved the NOx–PM trade-off, and increased the brake thermal efficiency. The maximum achieved PM emission reduction was 86.8% for high loads. However, NOx emission increased, and also low heat capacity and viscosity can be a problem for real applications
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access). As soon as the paper is accepted, finally submitted and edited, the paper will appear in the "OnlineFirst" page of the journal, thus from this point no other internet-based publication is necessary.
References
Alahmer, A., Rezk, H., Aladayleh, W., Mostafa, A. O., Abu-Zaid, M., Alahmer, H., Gomaa, M. R.; Alhussan, A. A., Ghoniem, R. M. (2022) Modeling and Optimization of a Compression Ignition Engine Fueled with Biodiesel Blends for Performance Improvement. Mathematics. 10, 420. DOI: https://doi.org/h8fs
Barro, C., Parravicinia, M., Boulouchosa, K., Liatic, A. (2018). Neat polyoxymethylene dimethyl ether in a diesel engine. Part 2: Exhaust emission analysis. Fuel. 234. 1414–1421. DOI: https://doi.org/h8ft
Csemány, D., DarAli, O., Rizvi, S. A. H., Józsa, V. (2022). Comparison of volatility characteristics and temperature-dependent density, surface tension, and kinematic viscosity of n-butanol-diesel and ABE-diesel fuel blends. Fuel. 310, 122909. DOI: https://doi.org/h8fv
Eriksson, L., Thomasson, A. (2017). Cylinder state estimation from measured cylinder pressure traces – A Survey. Preprints of the 20th World Congress The International Federation of Automatic Control. URL: https://www.fs.isy.liu.se/en/Publications/Articles/IFACWC_17_LE_AT.pdf (Downloaded: 26 July 2022)
Haltenort, P., Hackbarth, K., Oestreich, D., Lautenschütz, L., Arnold, U., Sauer J. (2018). Heterogeneously catalyzed synthesis of oxymethylene dimethyl ethers (OME) from dimethyl ether and trioxane. Catalysis Communications. 109, 80–84. DOI: https://doi.org/gdf2hx
Härtl, M., Seidenspinner, P., Jacob, E., Wachtmeister, G. (2015). Oxygenate screening on a heavy-duty diesel engine and emission characteristics of highly oxygenated oxymethylene ether fuel OME1. Fuel. 153, 328–335. DOI: https://doi.org/gfxb8k
Lakshminarayanan, P. A., Aswin, S. (2016). Estimation of Particulate Matter from Smoke, Oil Consumption and Fuel Sulphur. SAE Technical Paper. 2016-32-0066. DOI: https://doi.org/h8fw
Liu, H., Wang, Z., Zhang, J., Wang, J., Shuai, S. (2017a). Study on combustion and emission characteristics of Polyoxymethylene Dimethyl Ethers/diesel blends in light-duty and heavy-duty diesel engines. Applied Energy. 185, 1393–1402. DOI: https://doi.org/f9jjdk
Liu, J., Sun, P., Huang, H., Meng, J., Yao, X. (2017b). Experimental investigation on performance, combustion and emission characteristics of a common-rail diesel engine fueled with polyoxymethylene dimethyl ethers-diesel blends. Applied Energy. 202, 527–536. DOI: https://doi.org/gbsxgn
Liu, J., Wang, L., Wang, P., Sun, P., Liu, H., Meng, Z., Zhang, L., Ma, H. (2022). An overview of polyoxymethylene dimethyl ethers as alternative fuel for compression ignition engines. Fuel. 318, 123582. DOI: https://doi.org/h8fx
Norhafana, M., Noor, M. M., Hairuddin, A. A. (2020). Concentration measurement on preparation of blending SiO2 nano biodiesel. Materials Science and Engineering. 736, 022114. DOI: https://doi.org/h8fz
Omari, A., Heuser, B., Pischinger, S. (2017). Potential of oxymethylenether-diesel blends for ultra-low emission engines. Fuel. 209, 232–237. DOI: https://doi.org/h8f2
Omari, A., Heuser, B., Pischinger, S., Rüdinger, C. (2019). Potential of long-chain oxymethylene ether and oxymethylene ether-diesel blends for ultra-low emission engines. Applied Energy. 239, 1242–1249. DOI: https://doi.org/h8f3
Parravicini, M., Barro, C., Boulouchos, K. (2021). Experimental characterization of GTL, HVO, and OME based alternative fuels for diesel engines. Fuel. 292, 120177. DOI: https://doi.org/h8f4
Pélerin, D., Gaukel, K., Härtl, M., Jacob, E., Wachtmeistera G. (2020). Potentials to simplify the engine system using the alternative diesel fuels oxymethylene ether OME1 and OME3−6 on a heavy-duty engine. Fuel. 259, 116231. DOI: https://doi.org/h8f5
Soam, S., Hillman, K. (2019). Factors influencing the environmental sustainability and growth of hydrotreated vegetable oil (HVO) in Sweden. Bioresource Technology Reports. 7, 100244. DOI: https://doi.org/gh8d6z
Török Á., Zöldy M. (2005). Calculation of excess emissions from vehicles entering the traffic, taking into account international limit values [in Hugarian: A forgalomba belépő gépjárművek többlet károsanyag kibocsátásának számítása a nemzetközi határértékek figyelembevételéve]. Transport Scientific Review [in Hungarian: Közlekedéstudományi Szemle]. 55, 336–339.
Wu, Y., Ays, I., Geimer, M. (2019). Analysis and Preliminary Design of Oxymethylene ether (OME) Driven Mobile Machines. Preprint. DOI: https://doi.org/h8f6
Yin, X., Li, Z., Yang, B., Sun, T., Wang, Y., Zeng, K. (2021). Experimental study of the combustion characteristics prediction model for a sensor-less closed-loop control in a heavy-duty NG engine. Fuel. 300, 120945. DOI: https://doi.org/gjwff5
Zoldy, M., Szalmane Csete, M., Kolozsi, P. P., Bordas, P., Torok, A. (2022). Cognitive Sustainability. Cognitive Sustainability. 1(1). DOI: https://doi.org/htfq