Effects of Oxymethylene Ether in a Commercial Diesel Engine

Main Article Content

Márton Virt
Ulrich Arnold


Oxymethylen Ether (OME) is a promising alternative fuel for diesel engines. It can be produced sustainably, and its combustion is clean and efficient. This study investigates the effects of different OME3-5 mixtures on emissions and combustion. The measurements were done on a four-cylinder common rail commercial diesel engine equipped with an exhaust gas recirculation system (EGR). Five different blends of OME3-5 and B7 diesel were applied with 0, 7, 15, 25 and 45 vol% OME3-5 content at four loads. The NOx–PM trade-off was investigated at 11 EGR rates for each mixture at each load. Increasing OME3-5 mixing ratio reduced the PM emission, improved the NOx–PM trade-off, and increased the brake thermal efficiency. The maximum achieved PM emission reduction was 86.8% for high loads. However, NOx emission increased, and also low heat capacity and viscosity can be a problem for real applications

Article Details

How to Cite
Virt, M., & Arnold, U. (2022). Effects of Oxymethylene Ether in a Commercial Diesel Engine. Cognitive Sustainability, 1(3). https://doi.org/10.55343/cogsust.20


Alahmer, A., Rezk, H., Aladayleh, W., Mostafa, A. O., Abu-Zaid, M., Alahmer, H., Gomaa, M. R.; Alhussan, A. A., Ghoniem, R. M. (2022) Modeling and Optimization of a Compression Ignition Engine Fueled with Biodiesel Blends for Performance Improvement. Mathematics. 10, 420. DOI: https://doi.org/h8fs

Barro, C., Parravicinia, M., Boulouchosa, K., Liatic, A. (2018). Neat polyoxymethylene dimethyl ether in a diesel engine. Part 2: Exhaust emission analysis. Fuel. 234. 1414–1421. DOI: https://doi.org/h8ft

Csemány, D., DarAli, O., Rizvi, S. A. H., Józsa, V. (2022). Comparison of volatility characteristics and temperature-dependent density, surface tension, and kinematic viscosity of n-butanol-diesel and ABE-diesel fuel blends. Fuel. 310, 122909. DOI: https://doi.org/h8fv

Eriksson, L., Thomasson, A. (2017). Cylinder state estimation from measured cylinder pressure traces – A Survey. Preprints of the 20th World Congress The International Federation of Automatic Control. URL: https://www.fs.isy.liu.se/en/Publications/Articles/IFACWC_17_LE_AT.pdf (Downloaded: 26 July 2022)

Haltenort, P., Hackbarth, K., Oestreich, D., Lautenschütz, L., Arnold, U., Sauer J. (2018). Heterogeneously catalyzed synthesis of oxymethylene dimethyl ethers (OME) from dimethyl ether and trioxane. Catalysis Communications. 109, 80–84. DOI: https://doi.org/gdf2hx

Härtl, M., Seidenspinner, P., Jacob, E., Wachtmeister, G. (2015). Oxygenate screening on a heavy-duty diesel engine and emission characteristics of highly oxygenated oxymethylene ether fuel OME1. Fuel. 153, 328–335. DOI: https://doi.org/gfxb8k

Lakshminarayanan, P. A., Aswin, S. (2016). Estimation of Particulate Matter from Smoke, Oil Consumption and Fuel Sulphur. SAE Technical Paper. 2016-32-0066. DOI: https://doi.org/h8fw

Liu, H., Wang, Z., Zhang, J., Wang, J., Shuai, S. (2017a). Study on combustion and emission characteristics of Polyoxymethylene Dimethyl Ethers/diesel blends in light-duty and heavy-duty diesel engines. Applied Energy. 185, 1393–1402. DOI: https://doi.org/f9jjdk

Liu, J., Sun, P., Huang, H., Meng, J., Yao, X. (2017b). Experimental investigation on performance, combustion and emission characteristics of a common-rail diesel engine fueled with polyoxymethylene dimethyl ethers-diesel blends. Applied Energy. 202, 527–536. DOI: https://doi.org/gbsxgn

Liu, J., Wang, L., Wang, P., Sun, P., Liu, H., Meng, Z., Zhang, L., Ma, H. (2022). An overview of polyoxymethylene dimethyl ethers as alternative fuel for compression ignition engines. Fuel. 318, 123582. DOI: https://doi.org/h8fx

Norhafana, M., Noor, M. M., Hairuddin, A. A. (2020). Concentration measurement on preparation of blending SiO2 nano biodiesel. Materials Science and Engineering. 736, 022114. DOI: https://doi.org/h8fz

Omari, A., Heuser, B., Pischinger, S. (2017). Potential of oxymethylenether-diesel blends for ultra-low emission engines. Fuel. 209, 232–237. DOI: https://doi.org/h8f2

Omari, A., Heuser, B., Pischinger, S., Rüdinger, C. (2019). Potential of long-chain oxymethylene ether and oxymethylene ether-diesel blends for ultra-low emission engines. Applied Energy. 239, 1242–1249. DOI: https://doi.org/h8f3

Parravicini, M., Barro, C., Boulouchos, K. (2021). Experimental characterization of GTL, HVO, and OME based alternative fuels for diesel engines. Fuel. 292, 120177. DOI: https://doi.org/h8f4

Pélerin, D., Gaukel, K., Härtl, M., Jacob, E., Wachtmeistera G. (2020). Potentials to simplify the engine system using the alternative diesel fuels oxymethylene ether OME1 and OME3−6 on a heavy-duty engine. Fuel. 259, 116231. DOI: https://doi.org/h8f5

Soam, S., Hillman, K. (2019). Factors influencing the environmental sustainability and growth of hydrotreated vegetable oil (HVO) in Sweden. Bioresource Technology Reports. 7, 100244. DOI: https://doi.org/gh8d6z

Török Á., Zöldy M. (2005). Calculation of excess emissions from vehicles entering the traffic, taking into account international limit values [in Hugarian: A forgalomba belépő gépjárművek többlet károsanyag kibocsátásának számítása a nemzetközi határértékek figyelembevételéve]. Transport Scientific Review [in Hungarian: Közlekedéstudományi Szemle]. 55, 336–339.

Wu, Y., Ays, I., Geimer, M. (2019). Analysis and Preliminary Design of Oxymethylene ether (OME) Driven Mobile Machines. Preprint. DOI: https://doi.org/h8f6

Yin, X., Li, Z., Yang, B., Sun, T., Wang, Y., Zeng, K. (2021). Experimental study of the combustion characteristics prediction model for a sensor-less closed-loop control in a heavy-duty NG engine. Fuel. 300, 120945. DOI: https://doi.org/gjwff5

Zoldy, M., Szalmane Csete, M., Kolozsi, P. P., Bordas, P., Torok, A. (2022). Cognitive Sustainability. Cognitive Sustainability. 1(1). DOI: https://doi.org/htfq