Adaptation of economic intervention effect on mobility model in Far East environment

Main Article Content

Li Aijuan
Mate ZOLDY

Abstract

Mobility is a key pillar of the 21st century, connecting people and information while presenting sustainability challenges. This paper aims to evaluate the impact of economic interventions on urban mobility, specifically through the introduction of parking fees in Jinan, China. The study employs a refined mobility model that categorises road usage into downtown, city, rural, and motorway environments and adapts European baseline data to the Far Eastern context. Data and methods include the development of a model measuring individual utility by average speed and social utility by CO2 emissions per passenger kilometre. The model is adapted to reflect Far Eastern cities’ unique urbanisation and energy mix. Results indicate that the introduction of parking fees in Jinan has significantly reduced traffic congestion, increased public transportation usage by 20%, and decreased CO2 emissions by 8%. The tiered pricing system has improved urban space utilisation and economic efficiency. In conclusion, the study highlights the effectiveness of economic tools in promoting sustainable urban mobility and underscores the need for region-specific adaptations. Future research should explore additional economic interventions and expand the model’s applicability to other regions.

Article Details

How to Cite
Aijuan , L., & ZOLDY, M. (2025). Adaptation of economic intervention effect on mobility model in Far East environment. Cognitive Sustainability, 4(2). https://doi.org/10.55343/cogsust.185
Section
Articles

References

Bieker, G. (2021). A global comparison of the life-cycle greenhouse gas emissions of combustion engine and electric passenger cars. ICCT White Paper. URL: https://theicct.org/sites/default/files/publications/Global-LCA-passenger-cars-jul2021_0.pdf

Buzási, A., Csete, M. (2015). Sustainability indicators in assessing urban transport systems. Periodica Polytechnica Transportation Engineering. 43(3), 138–145. DOI: 10.3311/PPtr.7825

Buzási, A., Jäger, B. S. (2020). District-scale assessment of urban sustainability. Sustainable Cities and Society. 62, 102388. DOI: 10.1016/j.scs.2020.102388

Chen, C. (2017). At 20km/h you are moving only slightly faster than a donkey in Jinan, China’s most gridlocked city. South China Morning Post, 2017, November 28. URL: https://www.scmp.com/business/china-business/article/2121979/20km/h-you-are-moving-only-slightly-faster-donkey-jinan

Gaal, G., Horváth, E., Török, Á., Csete, M. (2015). Analysis of Public Transport Performance in Budapest, Hungary. Periodica Polytechnica Social and Management Sciences. 23(1), pp. 68–72. DOI: 10.3311/PPso.7724

Gao, J. (2025). Research on improving traffic planning control in Jinan City, Shandong Province based on big data urban planning. Advances in Economics Management and Political Sciences. 148(1), 60–66. DOI: 10.54254/2754-1169/2024.LD19168

He, D., Meng, F., Wang, M. Q., He, K. (2011). Impacts of urban transportation mode split on CO2 emissions in Jinan, China. Energies. 4(4), 685–699. DOI: 10.3390/en4040685

IEA (2020). GHG intensity of passenger transport modes, 2019. URL: https://www.iea.org/data-and-statistics/charts/ghg-intensity-of-passenger-transport-modes-2019

Kocziszky, Gy. 2023. Quo Vadis, Market Economy? Challenges of Sustainability and Values, Possible Answers. Public Finance Quarterly. 69(1), 9–28. DOI: 10.35551/PFQ_2023_1_1

Nguyen, H. P., Le, P. Q. H., Pham, V. V., Nguyen, X. P., Balasubramaniam, D., Hoang, A. T. (2025). Application of the Internet of Things in 3E (efficiency, economy, and environment) factor-based energy management as smart and sustainable strategy. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. 47(1), 9586–9608. DOI: 10.1080/15567036.2021.1954110

Orynycz, O., Rodrigues, G. S., Mendes dos Reis, J. G., Kulesza, E., Matijošius, J., Teixeira Machado, S. (2025). Energy and environmental benefits of in-motion charging trolleybuses: A case study of Vilnius. Energies, 18(12), 3015. DOI: 10.3390/en18123015

Pengjun, Z., Shengxiao, L. (2018). Suburbanisation, land use of TOD and lifestyle mobility in the suburbs. Journal of Transport and Land Use, 11(1), 195-215. DOI: 10.5198/jtlu.2018.1099

Szalmáné Csete M., Zöldy M., Török Á. (2024). Új mobilitási megoldások: technikai lehetőségek és pénzügyi aspektusok a fenntarthatóság tükrében [New mobility solutions: technical possibilities and financial aspects in the light of sustainability]. In: Kolozsi P. P. (szerk.): A pénz jövője, a jövő pénze I: Pénzügyek történelmi perspektívában, zöld pénzügyi fordulat [The Future of Money, the Money of the Future: Finance in Historical Perspective: the Green Financial Turn]. METU–MNB, Budapest. 183–199.

Torok, A., Torok, A., Heinitz, F. (2014). Usage of production functions in the comparative analysis of transport related fuel consumption. Transport and Telecommunication. 15(4), 292. DOI: https://doi.org/10.2478/ttj-2014-0025

Transport & Environment (2020). How clean are electric cars? T&E’s analysis of electric car lifecycle CO2 emissions. Briefing by Transport & Environment. URL: https://www.transportenvironment.org/uploads/files/TEs-EV-life-cycle-analysis-LCA.pdf

Wengritzky, Z., Szabó, T. P., Dézsi-Benyovszky, A. (2024). Spatial effects of economical and infrastructural factors on BEV adoption: Evidence from an emerging market. Review of Economic Studies & Research Virgil Madgearu. 17(1). DOI: 10.24193/RVM.2024.17.113

World Bank. (2018). Reducing Traffic Congestion and Emission in Chinese Cities. World Bank. URL: https://www.worldbank.org/en/news/feature/2018/11/16/reducing-traffic-congestion-and-emission-in-chinese-cities

Yang, Z., Jia, P., Liu, W., Yin, H. (2017). Car ownership and urban development in Chinese cities: A panel data analysis. Journal of Transport Geography. 58, 127–134. DOI: 10.1016/j.jtrangeo.2016.11.015

Zamprogno M. M., Esztergár-Kiss D. (2024). Applying Cluster Analysis for the Investigation of Travel Behavior and User Profiles. Periodica Polytechnica: Transportation Engineering. 52(4), 362–371. DOI: 10.3311/PPtr.25663

Zhang, Y., Zhao, L., Zhao, H., Gao, X. (2021). Urban development trend analysis and spatial simulation based on time series remote sensing data: A case study of Jinan, China. PLoS ONE. 16(10), e0257776. DOI: 10.1371/journal.pone.0257776

Zöldy, M. (2024). Changes at mobility space use in the cognitive mobility era. Acta Technica Jaurinensis. 17(4), 163–168. DOI: 10.14513/actatechjaur.00750

Zöldy M., Kolozsi P. P. (2025). Analysis Of Economic Policy Instruments To Promote Sustainable Mobility. Acta Universitatis Sapientiae – Economics and Business. Online first. URL: https://acta.sapientia.ro/content/docs/ACTA-Economics-2025-13--2.pdf

Zoldy, M., Csete, M. S., Kolozsi, P. P., Bordas, P., Torok, A. (2022). Cognitive sustainability. Cognitive Sustainability. 1(1). DOI: 10.55343/cogsust.7

Zöldy, M., Baranyi, P., Török, Á. (2024). Trends in Cognitive Mobility in 2022. Acta Polytechnica Hungarica. 21(7), 189–202. DOI: 10.12700/APH.21.7.2024.7.11