Sustainable Control of Fusarium verticillioides in Wheat Using Plant Extracts and Microorganisms

Main Article Content

Samira Mebdoua
Nouari SADRATI
Saliha Mohammedi
Amal Saidi

Abstract

Fusarium verticillioides is frequently reported as the major pathogen in maize production; however, it has not been previously identified as a causal agent of Fusarium head blight in wheat in Algeria. The aims of this work are to study the pathogenicity of a Fusarium verticillioides strain isolated from wheat grains and to perform preliminary assays to control this pathogen using plant extracts from Rosmarinus officinalis, Origanum vulgare and Eucalyptus globulus, and three microorganisms (Akanthomyces muscarius, Pseudomonas fluorescens, and Pantoea agglomerans). The identity of the strain was confirmed using morphological and molecular methods. The pathogenicity tests were carried out using both durum and bread wheat grains. The agar dilution method was used to evaluate the antifungal activity of the extracts, while the direct confrontation method was used to assess the antifungal activity of the three microorganisms. The results showed that the strain was pathogenic to both durum and bread wheat. Aqueous extracts showed low inhibition rates (14 to 47%), while ethanolic extracts had higher inhibition rates (52 to 65%). Direct confrontation tests revealed inhibition rates of 55% and 52% for A. muscarius and P. fluorescens, respectively. The fungus A. muscarius was also shown to be able to reduce the symptoms of F. verticillioides in antagonism tests using wheat seeds. The ethanolic extracts of the three plants, A. muscarius, and P. fluorescens may offer alternative solutions to the use of fungicides.

Article Details

How to Cite
Mebdoua, S., SADRATI, N. ., Mohammedi, S., & Saidi, A. (2025). Sustainable Control of Fusarium verticillioides in Wheat Using Plant Extracts and Microorganisms. Cognitive Sustainability, 4(2). https://doi.org/10.55343/cogsust.138
Section
Articles

References

Abdallah-Nekache, N., Laraba, I., Ducos, C., Barreau, C., Bouznad, Z., Boureghda, H. (2019). Occurrence of Fusarium head blight and Fusarium crown rot in Algerian wheat: Identification of associated species and assessment of aggressiveness. European Journal of Plant Pathology. 154(3), 499–512. DOI: https://doi.org/10.1007/s10658-019-01673-7

Andrews, S., Pitt, J. I. (1986). Selective medium for isolation of Fusarium species and dematiaceous hyphomycetes from cereals. [Comparative Study]. Applied and Environmental Microbiology. 51(6), 1235–1238. DOI: https://doi.org/10.1128/AEM.51.6.1235-1238.1986

Bachouche N., Abbas F., Berghout K., Lamri N., Metna F. A. A. (2024). Assessing the phytosanitary protection of cereal crops in the Bouira region (Northern Algeria). Cognitive Sustainability. 3(3). DOI: https://doi.org/10.55343/cogsust.113

Bouanaka, H., Bellil, I., Khelifi, D. (2022). First report on Fusarium cerealis, identification and virulence as causal agents of crown rot on wheat in Algeria. Archives of Phytopathology and Plant Protection. 55(5), 597–614. DOI: https://doi.org/10.1080/03235408.2022.2035557

Campanella, V. (2023). Fusarium foot rot: Monitoring and characterization of soil-rhizosphere populations in durum wheat. Applied Soil Ecology. 191, 105051. DOI: https://doi.org/10.1016/j.apsoil.2023.105051

Carbone, I., Kohn, L. M. (1999). A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia. 91(3), 553–556. DOI: https://doi.org/10.1080/00275514.1999.12061051

Chavan, P. S., Tupe, S. G. (2014). Antifungal activity and mechanism of action of carvacrol and thymol against vineyard and wine spoilage yeasts. Food Control. 46, 115–120. DOI: https://doi.org/10.1016/j.foodcont.2014.05.007

Coccimiglio, J., Alipour, M., Jiang, Z.-H., Gottardo, C., Suntres, Z. (2016). Antioxidant, antibacterial, and cytotoxic activities of the ethanolic Origanum vulgare extract and its major constituents. Oxidative Medicine and Cellular Longevity. 2016(1), 1404505. DOI: https://doi.org/10.1155/2016/1404505

da Silva, J. A. T., de Medeiros, E. V., da Silva, J. M., Tenório, D. d. A., Moreira, K. A., da Silva Nascimento, T. C. E., Souza-Motta, C. (2017). Antagonistic activity of Trichoderma spp. against Scytalidium lignicola CMM 1098 and antioxidant enzymatic activity in cassava. Phytoparasitica. 45(2), 219–225. DOI: https://doi.org/10.1007/s12600-017-0578-x

Dambolena, J. S., López, A. G., Meriles, J. M., Rubinstein, H. R., Zygadlo, J. A. (2012). Inhibitory effect of 10 natural phenolic compounds on Fusarium verticillioides. A structure–property–activity relationship study. Food Control. 28(1), 163–170. DOI: https://doi.org/10.1016/j.foodcont.2012.05.008

Douriet-Gámez, N. R., Maldonado-Mendoza, I. E., Ibarra-Laclette, E., Blom, J., Calderón-Vázquez, C. L. (2018). Genomic analysis of Bacillus sp. strain B25, a biocontrol agent of maize pathogen Fusarium verticillioides. Current Microbiology. 75, 247–255. DOI: https://doi.org/10.1007/s00284-017-1372-1

Dweba, C., Figlan, S., Shimelis, H., Motaung, T., Sydenham, S., Mwadzingeni, L., Tsilo, T. (2017). Fusarium head blight of wheat: Pathogenesis and control strategies. Crop Protection. 91, 114–122. DOI: https://doi.org/10.1016/j.cropro.2016.10.002

Fenta L., Mekonnen H., Kabtimer N. (2023). The exploitation of microbial antagonists against postharvest plant pathogens. Microorganisms. 11(4), 1044. DOI: https://doi.org/10.3390/microorganisms11041044

Gagkaeva, T. Y., Orina, A., Gavrilova, O., Ablova, I., Bespalova, L. (2018). Characterization of resistance of winter wheat varieties to Fusarium head blight. Вавиловский журнал генетики и селекции – Vavilov Journal of Genetics and Breeding. 22(6), 685–692. DOI: https://doi.org/10.18699/VJ18.411

Gagkaeva, T. Y., Yli-Mattila, T. (2020). Emergence of Fusarium verticillioides in Finland. European Journal of Plant Pathology. 158(4), 1051–1057. DOI: https://doi.org/10.1007/s10658-020-02118-2

Gardes, M., Bruns, T. D. (1993). ITS primers with enhanced specificity for basidiomycetes‐application to the identification of mycorrhizae and rusts. Molecular Ecology. 2(2), 113–118. DOI: https://doi.org/10.1111/j.1365-294X.1993.tb00005.x

Girish, K., Bhavya, B. (2018). Antifungal activity of Lantana camara L., rhizosphere bacteria. EurAsian Journal of BioSciences. 12(2), 245–251. URL: https://www.researchgate.net/publication/332154823_Antifungal_activity_of_Lantana_camara_L_rhizosphere_bacteria

Gomez-de La Cruz, I., Guillén-Navarro, K., Huerta-Palacios, G., García-Fajardo, L. V., Martínez-Bolaños, M. (2022). Enzyme activity of three mycoparasite isolates and their effect on Coffee Leaf Rust (Hemileia vastatrix Berk. & Br.). Symbiosis. 88(1), 47–59. DOI: https://doi.org/10.1007/s13199-022-00885-6

He, D., Shi, J., Qiu, J., Hou, Y., Du, Y., Gao, T., Huang, W., Wu, J., Lee, Y-W., Mohamed, S. R., Liu, X., Xu,. J. (2023). Antifungal activities of a novel triazole fungicide, mefentrifluconazole, against the major maize pathogen Fusarium verticillioides. Pesticide Biochemistry and Physiology. 192, 105398. DOI: https://doi.org/10.1016/j.pestbp.2023.105398

Hibar, K., Daami-Remadi, M., Khiareddine, H., El Mahjoub, M. (2005). Effet inhibiteur in vitro et in vivo du Trichoderma harzianum sur Fusarium oxysporum f. sp. radicis-lycopersici. Biotechnology, Agronomy, Society and Environment. 9(3), 163–171. URL: https://www.researchgate.net/publication/26411084_Effet_inhibiteur_in_vitro_et_in_vivo_du_Trichoderma_harzianum_sur_Fusarium_oxysporum_f_sp_Radicis-lycopersici

Ioos, R., Belhadj, A., Menez, M. (2004). Occurrence and distribution of Microdochium nivale and Fusarium species isolated from barley, durum and soft wheat grains in France from 2000 to 2002. Mycopathologia. 158, 351–362. DOI: https://doi.org/10.1007/s11046-004-2228-3

Jaber, L. R. (2018). Seed inoculation with endophytic fungal entomopathogens promotes plant growth and reduces crown and root rot (CRR) caused by Fusarium culmorum in wheat. Planta. 248, 1525–1535. DOI: https://doi.org/10.1007/s00425-018-2991-x

Lakušić, D., Ristić, M., Slavkovska, V., Lakušić, B. (2013). Seasonal variations in the composition of the essential oils of rosemary (Rosmarinus officinalis, Lamiaceae). Natural Product Communications. 8(1), 1934578X1300800132. DOI: https://doi.org/10.1177/1934578X1300800

Leslie, J. F., Summerell, B. A. (2006). The Fusarium Laboratory Manual. Blackwell. DOI: https://doi.org/10.1002/9780470278376

Mączka, W., Twardawska, M., Grabarczyk, M., Wińska, K. (2023). Carvacrol: A natural phenolic compound with antimicrobial properties. Antibiotics. 12(5), 824. DOI: https://doi.org/10.3390/antibiotics12050824

Martínez J. I., Gómez-Garrido M., Gómez-López M. D., Faz Á., Martínez-Martínez S., Acosta J. A. (2019) Pseudomonas fluorescens affects nutrient dynamics in plant-soil system for melon production. Chilean Journal of Agricultural Research. 79(2), 223–233. DOI: http://doi.org/10.4067/S0718-58392019000200223

Matarese, F., Sarrocco, S., Gruber, S., Seidl-Seiboth, V., Vannacci, G. (2012). Biocontrol of Fusarium head blight: Interactions between Trichoderma and mycotoxigenic Fusarium. Microbiology. 158(1), 98–106. DOI: https://doi.org/10.1099/mic.0.052639-0

Mishra, J., Mishra, I., Arora, N. K. (2022). 2, 4-Diacetylphloroglucinol producing Pseudomonas fluorescens JM-1 for management of ear rot disease caused by Fusarium moniliforme in Zea mays L. 3 Biotech. 12(6), 138. DOI: https://doi.org/10.1007/s13205-022-03201-7

Nakagawa, S., Hillebrand, G. G., Nunez, G. (2020). Rosmarinus officinalis L.(rosemary) extracts containing carnosic acid and carnosol are potent quorum sensing inhibitors of Staphylococcus aureus virulence. Antibiotics. 9(4), 149. DOI: https://doi.org/10.3390/antibiotics9040149

Pastuszak, J., Szczerba, A., Dziurka, M., Hornyák, M., Kopeć, P., Szklarczyk, M., Płażek, A. (2021). Physiological and biochemical response to Fusarium culmorum infection in three durum wheat genotypes at seedling and full anthesis stage. International Journal of Molecular Sciences. 22(14), 7433. DOI: https://doi.org/10.3390/ijms22147433

Reklaoui, L., Bzazou Elouazzani, Z. E. A., Annaz, H., Kasmi, M., Rfaki, A., Ghazal, H., Essalmani, H., Barrijal, S. (2024). Antifungal Activity of Essential Oils and Aqueous Extracts of Three Moroccan Plants: A Study on Ten Phytopathogenic Fungi. Tropical Journal of Natural Product Research. 8(8). DOI: https://doi.org/10.26538/tjnpr/v8i8.14

Sabo, V. A., Knezevic, P. (2019). Antimicrobial activity of Eucalyptus camaldulensis Dehn. plant extracts and essential oils: A review. Industrial Crops and Products. 132, 413–429. DOI: https://doi.org/10.1016/j.indcrop.2019.02.051

Saidi, A., Mebdoua, S., Mecelem, D., Al-Hoshani, N., Sadrati, N., Boufahja, F., Bendif, H. (2023). Dual biocontrol potential of the entomopathogenic fungus Akanthomyces muscarius against Thaumetopoea pityocampa and plant pathogenic fungi. Saudi Journal of Biological Sciences. 30(8), 103719. DOI: https://doi.org/10.1016/j.sjbs.2023.103719

Sakr, N. (2018). Aggressiveness of Fusarium head blight species towards two modern Syrian wheat cultivars in an in vitro Petri-dish. Cereal Research Communications. 46(3), 480–489. DOI: https://doi.org/10.1556/0806.46.2018.031

Sakr, N. (2022). Adaptation of phytopathogenic fungi to quantitative host resistance: in vitro selection for greater aggressiveness in Fusarium head blight species on wheat. Cytology and Genetics. 56(3), 261–272. DOI: https://doi.org/10.3103/S0095452722030112

Seepe, H., Amoo, S., Nxumalo, W., Adeleke, R. (2020). Sustainable use of thirteen South African medicinal plants for the management of crop diseases caused by Fusarium species: An in vitro study. South African Journal of Botany. 130, 456–464. DOI: https://doi.org/10.1016/j.sajb.2020.01.038

Turco, S., Drais, M. I., Rossini, L., Di Sora, N., Brugneti, F., Speranza, S., Contarini, M., Mazzaglia, A. (2024). Genomic and pathogenic characterization of Akanthomyces muscarius isolated from living mite infesting hazelnut big buds. Genes. 15(8), 993. DOI: https://doi.org/10.3390/genes15080993

Wilkinson, J. M. (2006). Methods for testing the antimicrobial activity of extracts. In: Ahmad, I., Aquil, F., Owais, M. (eds): Modern Phytomedicine: Turning Medicinal Plants into Drugs. 157–171. DOI: https://doi.org/10.1002/9783527609987

Xu, S., Liu, Y.-X., Cernava, T., Wang, H., Zhou, Y., Xia, T., Cao, S., Berg, G., Shen, X-X., Wen, Z., Li, C., Ruan, H., Chai, Y., Zhou, X., Ma, Z., Shi, Y., Bai, Y., Chen, Y. (2022). Fusarium fruiting body microbiome member Pantoea agglomerans inhibits fungal pathogenesis by targeting lipid rafts. Nature Microbiology. 7(6), 831–843. DOI: https://doi.org/10.1038/s41564-022-01131-x

Yates, I., Widstrom, N., Bacon, C., Glenn, A., Hinton, D., Sparks, D., Jaworski, A. (2005). Field performance of maize grown from Fusarium verticillioides-inoculated seed. Mycopathologia. 159, 65–73. DOI: https://doi.org/10.1007/s11046-004-8402-9

Zhao, B., He, D., Wang, L. (2021). Advances in Fusarium drug resistance research. Journal of Global Antimicrobial Resistance. 24, 215–219. DOI: https://doi.org/10.1016/j.jgar.2020.12.016