Polymerization of purified residual glycerol from biodiesel production

Main Article Content

António Barros
Feliciano Cangue
Vinicyus Wiggers
Fernando Pitt

Abstract

In the face of climate change and the increasing frequency of climate-related disasters, there is a growing emphasis on renewable fuel sources to mitigate greenhouse gas emissions. Biodiesel, produced from crude or residual vegetable oils and animal fats, represents a significant biofuel option. Its production process involves transesterifying triglycerides with short-chain alcohols, resulting in biodiesel and low-purity glycerol as byproducts. This study explores the polymerization of residual glycerol as a sustainable strategy to enhance its value, particularly in light of the rising biodiesel production rates, which generate approximately 10% residual glycerol. The research focuses on synthesizing polymers from glycerol and highlights its potential as a method to repurpose a byproduct of biodiesel production. Experimental tests were conducted in a batch reactor, utilizing glycerol and adipic acid polycondensation in ratios of 1:0.75, 1:1, 1:1.5, and 1:2 to produce adipic polyglycerol. The reactions were carried out at 160 ºC with stirring at 60 RPM, using dibutyl phthalate as a catalyst, and monitored for water accumulation. Both partially purified and commercially bi-distilled glycerol were employed in the experiments. Infrared spectrophotometry analysis revealed significant molecular transformations in the polymers synthesized under varying reaction conditions. These findings provide promising prospects for utilizing this material in the production of polymers with the potential to serve as robust alternatives to petroleum-based plastics. This study concludes that residual glycerol from biodiesel production can be effectively utilized as a raw material for polymer synthesis, offering considerable potential to replace fossil-based polymers and significantly reduce environmental impact.

Article Details

How to Cite
Barros, A., Cangue, F., Wiggers, V., & Pitt, F. (2025). Polymerization of purified residual glycerol from biodiesel production. Cognitive Sustainability, 4(1). https://doi.org/10.55343/cogsust.137
Section
Articles

References

Andrade, C. T., Coutinho, F. M. B., Dias, M. L., Lucas, E. F., Oliveira, C. M. F., & Tabak, D. (2001). Dicionário de Polímeros. Editora Interciência.

Al-Haimi, A. A. N. M., Luo, W., Fu, J., Zhu, S., Yehia, F., & Wang, Z. (2024). Optimization of crude glycerol purification for enhanced commercial value. Journal of Sustainable Chemistry, 15(3), 245–260. https://doi.org/ 10.1002/jctb.7718

Attarbachi, T., Kingsley, M. D., & Spallina, V. (2023). New trends on crude glycerol purification: A review. Fuel, 340, 127485. https://doi.org/10.1016/j.fuel.2023.127485

Aziz, I., Sulistina, R. C., Hendrawati, N., & Adhani, L. (2018). Purification of crude glycerol from acidification using tea waste. IOP Conference Series: Earth and Environmental Science, 175, 012010. https://doi.org/10.1088/1755-1315/175/1/012010

Barros, A. A. C., Wust, E., & Meier, H. F. (2008). Estudo da viabilidade técnico-científica da produção de biodiesel a partir de resíduos gordurosos [Evaluate the waste fatty acid by scientific and technical study to obtain biodiesel]. Engenharia Sanitária e Ambiental, 13(3), 255–262. https://doi.org/10.1590/S1413-41522008000300003

Barros, A. A. C. (2022). Evaluation of extractive distillation using efficiency correlation and experimental data: Avaliação da destilação extrativa usando a correlação de eficiência e dados experimentais. Studies in Engineering and Exact Sciences, 3(4), 737–754. https://doi.org/10.54021/seesv3n4-012

Brioude, M. M., Guimarães, D. H., Fiúza, R. P., Prado, L. A. S. A., Boaventura, J. S., & José, N. M. (2007). Synthesis and characterization of aliphatic polyesters from glycerol, by-product of biodiesel production, and adipic acid. Materials Research, 10(4), 335–339. https://doi.org/10.1590/S1516-14392007000400003

Cai, T., Li, H., Zhao, H., & Liao, K. (2013). Purification of crude glycerol from waste cooking oil-based biodiesel production by orthogonal test method. China Petroleum Processing and Petrochemical Technology, 15(1), 48–53.

Calderon, M. J. P., Dumancas, G. G., Gutierrez, C. S., Lubguban, A. A., Alguno, A. C., Malaluan, R. M., & Lubguban, A. A. (2023). Producing polyglycerol polyester polyol for thermoplastic polyurethane application: A novel valorisation of glycerol, a byproduct of biodiesel production. Heliyon, 9(9), e19491. https://doi.org/10.1016/j.heliyon.2023.e19491

Chol, C. G., Dhabhai, R., Dalai, A. K., & Reaney, M. (2018). Purification of crude glycerol derived from biodiesel production process: Experimental studies and technoeconomic analyses. Fuel Processing Technology, 178, 78–87. https://doi.org/10.1016/j.fuproc.2018.05.023

Colombo, K., Ender, L., & Barros, A. A. C. (2017). The study of biodiesel production using CaO as a heterogeneous catalytic reaction. Egyptian Journal of Petroleum, 26(2), 341–349. https://doi.org/10.1016/j.ejpe.2016.05.006

Colombo, K., Ender, L., Santos, M. M., & Barros, A. A. C. (2019). Production of biodiesel from soybean oil and methanol, catalyzed by calcium oxide in a recycle reactor. South African Journal of Chemical Engineering, 28, 19–25. https://doi.org/10.1016/j.sajce.2019.02.001

Ciriminna, R., Pina, C. D., Rossi, M., & Pagliaro, M. (2014). Understanding the glycerol market. European Journal of Lipid Science and Technology, 116(10), 1432–1439. https://doi.org/10.1002/ejlt.201400229

Da Silva, G. P., Mack, M., & Contiero, J. (2009). Glycerol: A promising and abundant carbon source for industrial microbiology. Biotechnology Advances, 27(1), 30–39. https://doi.org/10.1016/j.biotechadv.2008.07.006

Dhabhai, R., Ahmadifeijani, E., Dalai, A. K., & Reaney, M. (2016). Purification of crude glycerol using a sequential physico-chemical treatment, membrane filtration, and activated charcoal adsorption. Separation and Purification Technology, 168, 101–106. https://doi.org/10.1016/j.seppur.2016.05.030

Domingos, A. M., Pitt, F. D., & Barros, A. A. C. (2019). Purification of residual glycerol recovered from biodiesel production. South African Journal of Chemical Engineering, 29(1). https://doi.org/10.1016/j.sajce.2019.06.001

European Biodiesel Board (EBB). (2023a). Joint Position on Energy Taxation Directive (ETD) Revision. Retrieved from https://ebb-eu.org/wp-content/uploads/2023/05/EU-Biofuels-Chain-and-EBA-joint-position-on-ETD-revision.pdf

European Biodiesel Board (EBB). (2023a). EBB Statistical Report 2023. Retrieved from https://ebb-eu.org/wp-content/uploads/2024/03/EBB_Statistical_Report2023-Final.pdf

Frey, H., & Haag, R. (2002). Dendritic polyglycerol: A new versatile biocompatible material. Reviews in Molecular Biotechnology, 90(3–4), 257–267. https://doi.org/10.1016/S1389-0352(01)00063-0

Gabriel, K. C. P., Barros, A. A. C., & Correia, M. J. N. (2015). Study of molar ratio in biodiesel production from palm oil. International Association for Management of Technology, IAMOT Conference, Cape Town, South Africa, 434–442.

Gabriel, K., Santos, M. M., Adriano, J., Marques, J., Lemos, M., Muachia, A., & Barros, A. A. C. (2019). Anhydrous bio-ethanol produced from Elaeis Guineensis palm wine for use as a biodiesel feedstock. South African Journal of Chemical Engineering, 29(1), 10–16. https://doi.org/10.1016/j.sajce.2019.03.002

Garti, N., Aserin, A., & Zaidman, B. (1981). Polyglycerol ester: Optimization and techno-economic evaluation. Journal of the American Oil Chemists’ Society, 58(9), 878–883. https://doi.org/10.1007/BF02672963

Gerpen, J. V. (2005). Biodiesel processing and production. Fuel Processing Technology, 86(10), 1097–1107. https://doi.org/10.1016/j.fuproc.2005.01.004

Goldbach, A., Meier, H. F., Wiggers, V., Chiarello, L. M., & Barros, A. A. C. (2022). Combustion performance of bio-gasoline produced by waste fish oil pyrolysis. Chemical Industry and Chemical Engineering Quarterly, 28, 1–8. https://doi.org/10.2298/CICEQ200810010G

Gupta, A., et al. (2023). Sustainable approaches for glycerol utilization in biodiesel production: Challenges and opportunities. Energy Conversion and Management, 276, 116543. https://doi.org/10.1016/j.enconman.2022.116543

Habaki, H., Hayashi, T., Sinthupinyo, P., & Egashira, R. (2019). Purification of glycerol from transesterification using activated carbon prepared from Jatropha shell for biodiesel production. Journal of Environmental Chemical Engineering, 7(5), 103303. https://doi.org/10.1016/j.jece.2019.103303

International Energy Agency (IEA). (2023a). Biodiesel and renewable fuel production: By-product management. Retrieved from [insert link if available].

International Energy Agency (IEA). (2023b). The role of glycerol in renewable energy and sustainable industrial processes. Retrieved from [insert link if available].

Jewur, S. S. (1984). Conversão catalítica do etanol. Química Nova, 7(2), 67–79. Retrieved from https://typeset.io/pdf/conversao-catalitica-do-etanol-23rxdpxqnb.pdf

Kalvelage, P. M. S., Albuquerque, A. A., Barros, A. A. C., & Bertoli, S. L. (2017). (Vapor + Liquid) Equilibrium for mixtures ethanol + biodiesel from soybean oil and frying oil. International Journal of Thermodynamics, 20, 159–164. https://doi.org/10.5541/eoguijt.337160

Kumar, L. R., Yellapu, S. K., Tyagi, R. D., & Zhang, X. (2019). A review on variation in crude glycerol composition, bio-valorisation of crude and purified glycerol as carbon source for lipid production. Bioresource Technology, 293, 122155. https://doi.org/10.1016/j.biortech.2019.122155

Kumar, S., et al. (2021). Sustainable polymers from renewable resources: Role of stoichiometric control in polymerization. ACS Sustainable Chemistry & Engineering, 9(4), 1785–1798. https://doi.org/10.1021/acssuschemeng.0c08567

Liu, Y., et al. (2023). Recent developments in glycerol-based polyesters for sustainable materials. Polymer Engineering and Science, 63(5), 836–844. https://doi.org/10.1002/pen.26245

Li, X., et al. (2022). Recent progress in glycerol-based polymers: Catalytic strategies and environmental benefits. Polymer Reviews, 62(3), 456–489. https://doi.org/10.1080/15583724.2021.1995172

Mota, C. J. A., Da Silva, C. X. A., & Gonçalves, V. L. C. (2009). Gliceroquímica: Novos produtos e processos a partir da glicerina de produção de biodiesel. Química Nova, 32(3), 639–648. https://doi.org/10.1590/S0100-40422009000300008

Mota, C. J. A., et al. (2017). Recent advancements in glycerol valorization for bio-based products. Green Chemistry, 19(2), 419–432. https://doi.org/10.1039/C6GC02384A

Nanda, M., Yuan, Z., Qin, W., Poirier, M. A., & Xu, C. (2014). Purification of crude glycerol using acidification: Effects of acid types and product characterization. Austin Journal of Chemical Engineering, 1(1), 1004. Retrieved from https://austinpublishinggroup.com/chemical-engineering/fulltext/ace-v1-id1004.php

Nasir, N. F., Mirus, M. F., & Ismail, M. (2017). Purification of crude glycerol from transesterification reaction of palm oil using direct method and multistep method. IOP Conference Series: Materials Science and Engineering, 243, 012015. https://doi.org/10.1088/1757-899X/243/1/012015

OECD/FAO. (2023a). OECD-FAO Agricultural Outlook 2023-2032. Retrieved from [insert link if available].

OECD/FAO. (2023b). Global shift toward renewable feedstocks in the chemical industry. Retrieved from [insert link if available].

Oliveira, C. F., et al. (2020). Technological innovations for glycerol purification and applications in the biodiesel industry. Chemical Engineering Journal, 391, 123456. https://doi.org/10.1016/j.cej.2020.123456

Pitt, F. D., Boing, D., & Barros, A. A. C. (2011). Desenvolvimento histórico, científico e tecnológico de polímeros sintéticos e de fontes renováveis. Revista da Unifebe, 9(18). Retrieved from https://periodicos.unifebe.edu.br/index.php/RevistaUnifebe/article/view/47/38

Quispe, C. A. G., Coronado, C. J. R., & Carvalho, J. A. (2013). Glycerol: Production, consumption, prices, characterization, and new trends in combustion. Renewable and Sustainable Energy Reviews, 27, 475–493. https://doi.org/10.1016/j.rser.2013.06.017

Raman, A. A. A., Tan, H. W., & Buthiyappan, A. (2019). Two-step purification of glycerol as a value-added byproduct from the biodiesel production process. Frontiers in Chemistry, 7, 1–9. https://doi.org/10.3389/fchem.2019.00774

Rahman, M. M., et al. (2022). Recent trends in glycerol purification and utilization: A comprehensive review. Renewable and Sustainable Energy Reviews, 156, 111987. https://doi.org/10.1016/j.rser.2021.111987

Rahmanulloh, A., & Osinski, J. (2023). Biofuels Annual. United States Department of Agriculture (USDA), Foreign Agriculture Service. Public Distribution, September 2023. ID2023-0018. Jakarta, Indonesia.

Santos, R. G., et al. (2021). Advances in glycerol purification techniques for enhanced biodiesel production efficiency. Fuel Processing Technology, 213, 106678. https://doi.org/10.1016/j.fuproc.2020.106678

Silva, J. M., et al. (2021). Valorization of crude glycerol from biodiesel production: A review of recent advances. Journal of Environmental Management, 280, 111769. https://doi.org/10.1016/j.jenvman.2020.111769

Silva, R., et al. (2020). Optimization of glycerol polymerization for sustainable polymer production. Journal of Cleaner Production, 260, 121045. https://doi.org/10.1016/j.jclepro.2020.121045

Silva, A. L., Santos, A. P., Silveira, M. B., Gonçalves, A. D. S., & Barros, A. A. C. (2025). Barriers to implementing reverse logistics in companies: A systematic literature review. Study in Multidisciplinary Reviewer, 6(1), 1–22. DOI: 10.55034/smrv6n1-004.

Shinde, S. S., et al. (2021). Advancements in catalysts for ethanol dehydration: A review. Industrial & Engineering Chemistry Research, 60(8), 3382–3400. https://doi.org/10.1021/acs.iecr.0c06234

Tomatis, M., Zilli, M., & Pavan, F. (2024). Environmental and economic impacts of glycerol oversupply from biodiesel production. Journal of Cleaner Production, 450, 139876. https://doi.org/10.1016/j.jclepro.2023.139876

Virt, M., & Arnold, U. (2022). Effects of oxymethylene ether in a commercial diesel engine. Cognitive Sustainability, 1(3). https://doi.org/10.55343/cogsust.20

Wang, H., et al. (2023). Kinetic and mechanistic insights into glycerol polymerization for biodegradable polymers. Chemical Engineering Journal, 451, 138752. https://doi.org/10.1016/j.cej.2022.138752

Wolfson, A., Litvak, G., Dlugy, C., Shotland, Y., & Tavor, D. (2009). Employing crude glycerol from biodiesel production as an alternative green reaction medium. Industrial Crops and Products, 30(1), 78–81. https://doi.org/10.1016/j.indcrop.2009.02.003

Wu, D., et al. (2020). Green synthesis of polyglycerol and its potential applications. Green Chemistry, 22(11), 3451–3460. https://doi.org/10.1039/D0GC00987A

Wu, Z., et al. (2022). Functionalized biopolymers for advanced applications in biocompatible and biodegradable materials. Biomacromolecules, 23(4), 1234–1245. https://doi.org/10.1021/acs.biomac.1c01456

Zhang, L., et al. (2020). Renewable alcohols as feedstocks for bio-based chemicals and fuels: A review of ethanol, butanol, and other alcohol-based catalysts. Renewable and Sustainable Energy Reviews, 130, 1099–1115. https://doi.org/10.1016/j.rser.2020.109915

Zhang, S., et al. (2023). Optimization of glycerol polymerization with green catalysts for sustainable production. Sustainable Chemistry & Engineering, 11(4), 543–552. https://doi.org/10.1021/acssuschemeng.2c06345

Zhang, Y., et al. (2018). Advances in glycerol-based polymers: Synthesis and applications. Green Chemistry, 20(5), 1023–1035. https://doi.org/10.1039/C7GC03502A

Yang, X., et al. (2012). Explores glycerol as a feedstock for bio-based chemicals and polymers. [Journal/Book Title], [Volume](Issue), [Page Range]. [DOI/Publisher].

Zeleme, A. K., & Barros, A. A. C. (2022). Biodiesel production using reactive distillation column based on intensification processes. In T. Ohyama (Ed.), Soybean – Recent Advances in Research and Applications (Chapter 13). IntechOpen. DOI: 10.5772/intechopen.101928

Zöldy, M., & Baranyi, P. (2023). The cognitive mobility concept. Infocommunications Journal, 15(SP), 35–40. DOI: 10.36244/ICJ.2023.SI-IODCR.6

Zoldy, M., Csete, M. S., Kolozsi, P. P., Bordas, P., & Torok, A. (2022). Cognitive sustainability. Cognitive Sustainability, 1(1). DOI: 10.55343/cogsust.7