Comprehensive overview of sustainable food packaging material alternatives

Main Article Content

Aliz Vuk
Andrea Bauerné Dr. Gáthy

Abstract

The proliferation of plastic packaging materials and their accumulation as significant amounts of waste raises serious ecological concerns affecting humanity and the natural environment. New alternative packaging materials, including biodegradable and sustainable options, are being explored to address these concerns. This paper aims to provide a comprehensive overview of the literature on alternative packaging materials. This study covers biodegradable plastics, sustainable alternatives (Cellulose, Bamboo) and emerging packaging forms (edible packaging, nano-cellulose). SWOT analysis and cross-tabulation have been used to facilitate a comparative assessment of alternatives with plastic. The results show that recycling plastics or the production of bioplastics has not proven to be an effective solution. The environmental impact of sustainable and biodegradable packaging remains unclear. In addition, new materials (edible packaging materials, nano-cellulose fibres) are currently being tested that could reduce environmental impacts and waste. No alternative can fully replace plastic packaging, but new initiatives are promising.

Article Details

How to Cite
Vuk, A., & Bauerné Dr. Gáthy, A. (2025). Comprehensive overview of sustainable food packaging material alternatives. Cognitive Sustainability, 4(1). https://doi.org/10.55343/cogsust.131
Section
Articles

References

Abdul Khalil, H. P. S., Davoudpour, Y., Saurabh, C. K., Hossain, M. S., Adnan, A. S., Dungani, R., Paridah, M. T., Islam Sarker, M. Z., Fazita, M. R. N., Syakir, M. I., Haafiz, M. K. M. (2016). A review on nanocellulosic fibres as new material for sustainable packaging: Process and applications. Renewable and Sustainable Energy Reviews. 64, 823–836. DOI: https:/doi.org/10.1016/j.rser.2016.06.072

Adhikary, N. D., Bains, A., Sridhar, K., Kaushik, R., Chawla, P., Sharma, M. (2023). Recent advances in plant-based polysaccharide ternary complexes for biodegradable packaging. International Journal of Biological Macromolecules. 253, 126725. DOI: https:/doi.org/10.1016/j.ijbiomac.2023.126725

Ahmed, J., Varshney, S. K. (2011). Polylactides – Chemistry, properties and green packaging technology: A review. International Journal of Food Properties. 14(1), 37–58. DOI: https://doi.org/10.1080/10942910903125284

Barletta, M., Aversa, C., Puopolo, M., Vesco, S. (2019). Extrusion blow molding of environmentally friendly bottles in biodegradable polyesters blends. Polymer Testing. 77. DOI: https:/doi.org/10.1016/j.polymertesting.2019.05.001

Beczner, J., Perédi, J., Haidekker, B., Kertész, B., Lajos, J., Vásárhelyiné, P. K., Kardos Györgyné. (1997). A biológiai úton lebomló csomagolóanyagok előállítási és felhasználási lehetőségének vizsgálata itthon és külföldön Springer Science and Business Media LLC. URL: https://mek.oszk.hu/09800/09809/pdf/zold_belepo_05.pdf

Béguin, P., Aubert, J. (1994). The biological degradation of Cellulose. FEMS Microbiology Reviews. 13(1), 25–58. DOI: https:/doi.org/10.1111/j.1574-6976.1994.tb00033.x

Brizga, J., Hubacek, K., Feng, K. (2020). The unintended side effects of bioplastics: Carbon, land, and water footprints. One Earth. 3(1), 45–53. DOI: https:/doi.org/10.1016/j.oneear.2020.06.016

Chen, L., Pelton, R. E. O., Smith, T. M. (2016). Comparative life cycle assessment of fossil and bio-based polyethylene terephthalate (PET) bottles. Journal of Cleaner Production. 137, 667–676. DOI: https:/doi.org/10.1016/j.jclepro.2016.07.094

Chen, X., Chen, F., Wang, G., Ma, X., Wang, J., Deng, J. (2022). Eco-friendly, disposable bamboo fiber dishware: Static and dynamic mechanical properties and creep behavior. Industrial Crops and Products. 187, 115305. DOI: https:/doi.org/10.1016/j.indcrop.2022.115305

Cherian, R. M., Tharayil, A., Varghese, R. T., Antony, T., Kargarzadeh, H., Chirayil, C. J., Thomas, S. (2022). A review on the emerging applications of nano-cellulose as advanced coatings. Carbohydrate Polymers. 282, 119123. DOI: https:/doi.org/10.1016/j.carbpol.2022.119123

Clark, D. I. (2018). Food packaging and sustainability: A manufacturer's view. Reference Module in Food Sciences. Elsevier. DOI: https:/doi.org/10.1016/B978-0-08-100596-5.22587-0

Dharmadhikari, S. (2012). Eco-friendly packaging in supply chain. IUP Journal of Supply Chain Management. 9(2), 7–18. URL: https://www.proquest.com/scholarly-journals/eco-friendly-packaging-supply-chain/docview/1434427712/se-2?accountid=15756

Dilkes-Hoffman, L., Ashworth, P., Laycock, B., Pratt, S., Lant, P. (2019). Public attitudes towards bioplastics – knowledge, perception and end-of-life management. Resources, Conservation and Recycling. 151, 104479. DOI: https:/doi.org/10.1016/j.resconrec.2019.104479

European Parliament and Council Directive 94/62/EC of 20 December 1994 on packaging and packaging waste. URL: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A31994L0062 (accessed on 13. 06. 2024)

Firoozi Nejad, B., Smyth, B., Bolaji, I., Mehta, N., Billham, M., Cunningham, E. (2021). Carbon and energy footprints of high-value food trays and lidding films made of common bio-based and conventional packaging materials. Cleaner Environmental Systems. 3, 100058. DOI: https:/doi.org/10.1016/j.cesys.2021.100058

Frigione, M. (2010). Recycling of PET bottles as fine aggregate in concrete. Waste Management (Elmsford). 30(6), 1101–1106. DOI: https:/doi.org/10.1016/j.wasman.2010.01.030

Gervasoni, L. F., Gervasoni, K., de Oliveira Silva, K., Ferraz Mendes, M. E., Maddela, N. R., Prasad, R., Winkelstroter, L. K. (2023). Postbiotics in active food packaging: The contribution of cellulose nanocomposites. Sustainable Chemistry and Pharmacy. 36, 101280. DOI: https:/doi.org/10.1016/j.scp.2023.101280

Hofsten, B. V., Edberg, N. (1972). Estimating the rate of degradation of cellulose fibers in water. Oikos. 23(1), 29–34. DOI: https:/doi.org/doi.org/10.2307/3543924

Holler, M., Alberdi-Cedeño, J., Auñon-Lopez, A., Pointner, T., Martínez-Yusta, A., König, J., Pignitter, M. (2023). Polylactic acid as a promising sustainable plastic packaging for edible oils. Food Packaging and Shelf Life. 36, 101051. DOI: https:/doi.org/10.1016/j.fpsl.2023.101051

Ingrao, C., Tricase, C., Cholewa-Wójcik, A., Kawecka, A., Rana, R., Siracusa, V. (2015). Polylactic acid trays for fresh-food packaging: A carbon footprint assessment. The Science of the Total Environment. 537, 385–398. DOI: https:/doi.org/10.1016/j.scitotenv.2015.08.023

Johansson, C., Bras, J., Mondragon, I., Nechita, P., Plackett, D., Šimon, P., Svetec, D. G., Virtanen, S., Baschetti, M. G., Breen, C., Clegg, F., Aucejo, S. (2012). Renewable fibers and bio-based materials for packaging applications: A review of recent developments. BioResources. 7(2), 2506–2552. DOI: https:/doi.org/10.15376/biores.7.2.2506-2552

Kakadellis, S., Harris, Z. M. (2020). Don't scrap the waste: The need for broader system boundaries in bioplastic food packaging life-cycle assessment – A critical review. Journal of Cleaner Production. 274, 122831. DOI: https:/doi.org/10.1016/j.jclepro.2020.122831

Khwaldia, K., Arab‐Tehrany, E., Desobry, S. (2010). Biopolymer coatings on paper packaging materials. Comprehensive Reviews in Food Science and Food Safety. 9(1), 82–91. DOI: https:/doi.org/10.1111/j.1541-4337.2009.00095.x

Koenig-Lewis, N., Grazzini, L., Palmer, A. (2022). Cakes in plastic: A study of implicit associations of compostable bio-based versus plastic food packaging. Resources, Conservation and Recycling, 178, 105977. DOI: https:/doi.org/10.1016/j.resconrec.2021.105977

Kumar, G. M. Irshad, A. Raghunath, B. V., Rajarajan, G. (2016). Waste management in food packaging industry. In: Prashanthi, M., Sundaram, R. (eds) Integrated Waste Management in India. Springer International Publishing. 265–277. DOI: https:/doi.org/10.1007/978-3-319-27228-3_24

Karli Verghese, Helen Lewis, Leanne Fitzpatrick (2012). Packaging for Sustainability. Springer London. DOI: https://doi.org/10.1007/978-0-85729-988-8 URL: https://link.springer.com/book/10.1007/978-0-85729-988-8 p384

Rangaraj, V. M., Rambabu, K., Banat, F., Mittal, V. (2021). Natural antioxidants-based edible active food packaging: An overview of current advancements. Food Bioscience. 43, 101251. DOI: https:/doi.org/10.1016/j.fbio.2021.101251

Mahardika, M., Amelia, D., Azril, Syafri, E. (2023). Applications of nano-cellulose and its composites in bio packaging-based starch. Materials Today: Proceedings. 74, 415–418. DOI: https:/doi.org/10.1016/j.matpr.2022.11.138

Majeed, K., Jawaid, M., Hassan, A., Abu Bakar, A., Abdul Khalil, H. P. S., Salema, A. A., Inuwa, I. (2013). Potential materials for food packaging from nanoclay/natural fibres filled hybrid composites. Materials & Design (1980–2015). 46, 391–410. DOI: https:/doi.org/10.1016/j.matdes.2012.10.044

Marshall, J. (2007). Packaging unwrapped. NewScientist. 194(2598), 37–41. DOI: https:/doi.org/10.1016/S0262-4079(07)60869-0

Mary, S. K., Koshy, R. R., Rehghunadhan, A.., Thomas, S., Pothan, L. A. (2022). A review of recent advances in starch-based materials: Bio-nanocomposites, pH sensitive films, aerogels and carbon dots. Carbohydrate Polymer Technologies and Applications. 3, 100190. DOI: https:/doi.org/10.1016/j.carpta.2022.100190

OECD. (2022). Global Plastics Outlook: Economic Drivers, Environmental Impacts and Policy Options. DOI: https://doi.org/10.1787/de747aef-en URL: https://www.oecd.org/en/publications/global-plastics-outlook_de747aef-en/full-report.html

Panzone, L. A., Ulph, A., Zizzo, D. J., Hilton, D., Clear, A. (2021). The impact of environmental recall and carbon taxation on the carbon footprint of supermarket shopping. Elsevier BV. DOI: https:/doi.org/10.1016/j.jeem.2018.06.002

Perera, K. Y., Pradhan, D., Rafferty, A., Jaiswal, A. K., Jaiswal, S. (2023). A comprehensive review on metal oxide-nanocellulose composites in sustainable active and intelligent food packaging. Food Chemistry Advances. 3, 100436. DOI: https:/doi.org/10.1016/j.focha.2023.100436

Petkoska, A. T., Daniloski, D., D’Cunha, N. M., Naumovski, N., Broach, A. T. (2021). Edible packaging: Sustainable solutions and novel trends in food packaging. Food Research International. 140, 109981. DOI: https:/doi.org/10.1016/j.foodres.2020.109981

Raghuvanshi, S., Khan, H., Saroha, V., Sharma, H., Gupta, H. S., Kadam, A., Dutt, D. (2023). Recent advances in biomacromolecule-based nanocomposite films for intelligent food packaging. A review. International Journal of Biological Macromolecules. 253, 127420. DOI: https:/doi.org/10.1016/j.ijbiomac.2023.127420

Rossi, V., Lehesvirta, T., Schenker, U., Lundquist, L., Koski, O., Gueye, S., Taylor, R., Humbert, S. (2018). Capturing the potential biodiversity effects of forestry practices in life cycle assessment. The International Journal of Life Cycle Assessment. 23(6), 1192–1200. DOI: https:/doi.org/10.1007/s11367-017-1352-5

Schenker, U., Chardot, J., Missoum, K., Vishtal, A., Bras, J. (2021). Short communication on the role of cellulosic fiber-based packaging in reduction of climate change impacts. Carbohydrate Polymers, 254, 117248. DOI: https:/doi.org/10.1016/j.carbpol.2020.117248

Shafqat, A., Tahir, A., Mahmood, A., Tabinda, A. B., Yasar, A., Pugazhendhi, A. (2020). A review on environmental significance carbon foot prints of starch based bio-plastic: A substitute of conventional plastics. Biocatalysis and Agricultural Biotechnology. 27, 8. DOI: https:/doi.org/10.1016/j.bcab.2020.101540

Singh, H., Kumar Verma, A., Kumar Trivedi, A., Gupta, M. K. (2023). Characterisation of nano-cellulose isolated from bamboo fibers. Materials Today: Proceedings, DOI: https:/doi.org/10.1016/j.matpr.2023.02.300

Taufik, D., Reinders, M. J., Molenveld, K., Onwezen, M. C. (2020). The paradox between the environmental appeal of bio-based plastic packaging for consumers and their disposal behaviour. Elsevier BV. DOI: https:/doi.org/10.1016/j.scitotenv.2019.135820

Tiefbrunner, A. (2002). Packaing and Environmental Protection [in Hungarian: Csomagolás és környezetvédelem]. Paper-Press Association [in Hungarian: Papír-Press Egyesülés].

Torres-Huerta, A. M., Palma-Ramírez, D., Domínguez-Crespo, M. A., Del Angel-López, D., de la Fuente, D. (2014). Comparative assessment of miscibility and degradability on PET/PLA and PET/chitosan blends. European Polymer Journal. 61, 285–299. DOI: https:/doi.org/10.1016/j.eurpolymj.2014.10.016

Tyagi, P., Salem, K. S., Hubbe, M. A., Pal, L. (2021). Advances in barrier coatings and film technologies for achieving sustainable packaging of food products: A review. Trends in Food Science & Technology. 115, 461–485. DOI: https:/doi.org/10.1016/j.tifs.2021.06.036

Vea, E. B., Fabbri, S., Spierling, S., Owsianiak, M. (2021). Inclusion of multiple climate tipping as a new impact category in life cycle assessment of polyhydroxyalkanoate (PHA)-based plastics. Science of the Total Environment. 788, 147544. DOI: https:/doi.org/10.1016/j.scitotenv.2021.147544

Vural Gursel, I., Moretti, C., Hamelin, L., Jakobsen, L. G., Steingrimsdottir, M. M., Junginger, M., Høibye, L., Shen, L. (2021). Comparative cradle-to-grave life cycle assessment of bio-based and petrochemical PET bottles. Elsevier BV. DOI: https:/doi.org/10.1016/j.scitotenv.2021.148642

Wyrwa, J., Barska, A. (2017). Innovations in the food packaging market: Active packaging. Springer Science and Business Media LLC. DOI: https:/doi.org/10.1007/s00217-017-2878-2