Analysis and Control of the Gearshift Process Based on a Dog Clutch Shiftability Model
Main Article Content
Abstract
This paper deals with gearshift control using a face dog clutch as a shifting element. Based on our previous work on dog clutch kinematics, the paper identifies optimal control parameters, such as the angular position difference at which the gearshift process can start and the linear reference position trajectory. The robustness of the control parameters is shown. Further on, a gearshift mechanism dynamic model is developed, describing elements of an existing gearbox with shifting elements guided by a rotating disc. The coupled linear and torsional dynamics of the actuated shifting mechanism are analyzed. Finally, a linear quadratic regulator is designed and tested in a model in the loop environment for the requested reference trajectory to show the feasibility of the presented method. Three gearshift cases are considered, and the results show that the developed controller can perform a successful gearshift without experiencing a face impact between the gear and the sliding sleeve teeth in order to enhance sustainability.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access). As soon as the paper is accepted, finally submitted and edited, the paper will appear in the "OnlineFirst" page of the journal, thus from this point no other internet-based publication is necessary.
References
Al-Oran, O., Lezsovits, F.Aljawabrah, A. (2020): Exergy and energy amelioration for parabolic trough collector using mono and hybrid nanofluids. Journal of Thermal Analysis and Calorimetry. 140(3), 1579-1596. DOI: https://doi.org/ghdrdt
Aljawabrah, A.Lovas, L. (2022): Dynamic Modeling of An Electromechanical Gearshift Actuator [in Hungarian: Elektromechanikus Sebességváltó Aktuátor Dinamikai Modellezése]. Machines [in Hungarian: GÉP]. 73(3-4), 19-22.
Aljawabrah, A.Lovas, L. (2023a): Dynamic Modeling of the Dog Clutch Engagement Process Using Hybrid Automata. Jordan Journal of Mechanical and Industrial Engineering. 17(1), 127-138. URL: https://jjmie.hu.edu.jo/vol17/vol17-1/10-JJMIE-278-22.pdf
Aljawabrah, A.Lovas, L. (2023b): Kinematical Model of The Dog Clutch Shifting [In Hungraian: Körmös Tengelykapcsoló Kapcsolás Kinematikai Modellje]. Machines [in Hungarian: GÉP]. 74(1), 9-12.
Alsardia, T., Lovas, L.Ficzere, P. (2021) Prototype for fit investigations. Design Of Machines And Structures: A Publication Of The University Of Miskolc. 11(1), 5-15.
Alzyod, H.Ficzere, P. (2021) Potential applications of additive manufacturing technologies in the vehicle industry. Design Of Machines And Structures: A Publication Of The University Of Miskolc. 11(2), 5-13.
Andersson, M.Goetz, K. (2010). FE analysis of a dog clutch for trucks withall-wheel-drive Graduate Thesis. Linnaeus University, Växjö. URL: https://www.diva-portal.org/smash/record.jsf?pid=diva2%3A634202&dswid=8486.https://www.diva-portal.org/smash/record.jsf?pid=diva2%3A634202&dswid=8486 (Downloaded: 20 September 2020)
Bóka, G., Lovas, L., Márialigeti, J.Trencséni, B. (2010a) Engagement capability of face-dog clutches on heavy duty automated mechanical transmissions with transmission brake. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering. 224(9), 1125-1139. DOI: https://doi.org/bpcw6f
Bóka, G., Márialigeti, J., Lovas, L.Trencséni, B. (2009). External synchronization strategies for automated mechanical transmissions with face dog clutch and countershaft brake. Proceedings of the 8th International Multidisciplinary Conference.
Bóka, G., Márialigeti, J., Lovas, L.Trencséni, B. (2010b) Face dog clutch engagement at low mismatch speed. Periodica Polytechnica Transportation Engineering. 38(1), 29-35. DOI: https://doi.org/nj85
Burgelman, R. A.Grove, A. S. (2010) Toward Electric Cars and Clean Coal: A Comparative Analysis of Strategies and Strategy-Making in the US and China. Research Papers 2048, Stanford University, Graduate School of Business.
Council, N. R. (2015). Cost, effectiveness, and deployment of fuel economy technologies for light-duty vehicles. National Academies Press, Washington, D.C., USA.
Cui, L., Chen, L.Duan, D. (2015) Gain-scheduling model predictive control for unmanned airship with LPV system description. Journal of Systems Engineering and Electronics. 26(5), 1043-1051. DOI: https://doi.org/nj86
Dick, A., Greiner, J., Locher, A.Jauch, F. (2013) Optimization potential for a state of the art 8-Speed AT. SAE International Journal of Passenger Vehicle Systems. 6(2013-01-1272), 899-907. DOI: https://doi.org/nj87
Duan, C. (2014) Analytical study of a dog clutch in automatic transmission application. SAE International Journal of Passenger Vehicle Systems. 7(2014-01-1775), 1155-1162. DOI: https://doi.org/gj3fvb
Echtler, P., Mileti, M.Damm, A. (2017) TorqueLine-Konische Kupplung mit Formschluss als alternatives Schaltelement für Automatikgetriebe. VDI-Fachtagung Kupplungen und Kupplungssysteme in Antrieben, Ettlingen.
Eriksson, F., Kuttikkal, J. L.Mehari, A. (2013). Parametric study of a dog clutch used in a transfer case for trucks. Graduate Thesis. Linnaeus University, Växjö. URL: https://www.diva-portal.org/smash/record.jsf?pid=diva2%3A632773&dswid=-8516.https://www.diva-portal.org/smash/record.jsf?pid=diva2%3A632773&dswid=-8516 (Downloaded: 22 September 2020)
Farkas, G.Lovas, L. (2014): Connectivity test of Dog Clutch [in Hungarian: Körmös Tengelykapcsoló Kapcsolhatóságának Vizsgálata]. Machines [in Hungarian: GÉP]. LXV.
Greiner, J.Grumbach, M. (2013) Automatic transmission systems beyond 2020-challenges and competition. SAE Technical Paper. 0148-7191.
Juhasz, B., Szabo, A., Becsi, T.Aradi, S. (2020). Control design of an electromechanical gearbox actuator. Proceedings of the 2020 IEEE 24th International Conference on Intelligent Engineering Systems (INES). 109-114.
Laird, M. P., Lawton, B., and Gregory, R.P. (1990) Dog Clutches for Rapid Gear Changes in Automotive Gearboxes. proceedings of the Institution of Mechanical Engineers first international conference. 102-112.
Lee, Y., Lee, S.-H.Chung, C. C. (2017) LPV H infinity Control with Disturbance Estimation for Permanent Magnet Synchronous Motors. IEEE Transactions on Industrial Electronics. 65(1), 488-497. DOI: https://doi.org/gfz2f6
Liu, D., Li, S.Liu, H. (2021) Experimental Study on Formaldehyde Emission from Environmental Protection and Energy-Saving Alcohol Fuel for Vehicles. Jordan Journal of Mechanical and Industrial Engineering. 15(1), 1-6. URL: https://jjmie.hu.edu.jo/v15-1/01-A81050.pdf
Lovas, L., Play, D., Márialigeti, J.Rigal, J.-F. (2006a) Mechanical behaviour simulation for synchromesh mechanism improvements. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering. 220(7), 919-945. DOI: https://doi.org/c7tgp3
Lovas, L., Play, D., Márialigeti, J.Rigal, J.-F. (2006b) Modelling of gear changing behaviour. Periodica Polytechnica Transportation Engineering. 34(1-2), 35-58. URL: https://pp.bme.hu/tr/article/view/1898
Mallouh, M. A., Denman, B., Surgenor, B.Peppley, B. (2010) A study of fuel cell hybrid auto rickshaws using realistic urban drive cycles. Jordan Journal of Mechanical and Industrial Engineering. 4(1), 225-229. URL: https://jjmie.hu.edu.jo/files/v4n1%20wrong%20header/30.pdf
Mileti, M., Pointner, L., Pflaum, H.Stahl, K. (2019) TorqueLINE Cone Clutch: Performance Analysis of Highly Dynamic Form-Fit Shifts in Automatic Transmissions.) 2019 International Conference on Advanced Vehicle Powertrains.
Milovančević, M., Milčić, D., Andjelkovic, B.Vračar, L. (2022) Train Driving Parameters Optimization to Maximize Efficiency and Fuel Consumption. Acta Polytechnica Hungarica. 19(3). URL: https://acta.uni-obuda.hu/Milovancevic_Milcic_Andjelkovic_Vracar_121.pdf
Nguyen, D. D., Moghaddam, H., Pirouzfar, V., Fayyazbakhsh, A.Su, C.-H. (2021) Improving the gasoline properties by blending butanol-Al2O3 to optimize the engine performance and reduce air pollution. Energy. 218, 119442. DOI: https://doi.org/gqhf5g
Obeidi, T., Larbes, C., Ilinca, A., Filiz, G.Kebir, T. (2018) Fuzzy logic-based maximum power point tracking for a solar electric vehicle. Acta Polytechnica Hungarica. 15(7), 133-156. URL: https://acta.uni-obuda.hu/Obeidi_Larbes_Ilinca_Tchoketch-Kebir_86.pdf
Prasad, L. B., Tyagi, B.Gupta, H. O. (2011). Optimal control of nonlinear inverted pendulum dynamical system with disturbance input using PID controller & LQR. Proceedings of the 2011 IEEE International Conference on Control System, Computing and Engineering. 540-545.
Rudolph, F., Schaefer, M., Damm, A., Metzner, F.Steinberg, I. (2007) The innovative seven speed dual clutch gearbox for Volkswagen's compact cars; Das innovative 7-Gang-Doppelkupplungsgetriebe fuer die Kompaktklasse von Volkswagen.) 28. International Vienna motor symposium.
Shiotsu, I., Tani, H., Kimura, M., Nozawa, Y., Honda, A., Tabuchi, M., Yoshino, H.Kanzaki, K. (2019) Development of High Efficiency Dog Clutch with One-Way Mechanism for Stepped Automatic Transmissions. International Journal of Automotive Engineering. 10(2), 156-161. URL: https://www.jstage.jst.go.jp/article/jsaeijae/10/2/10_20194098/_pdf/-char/ja
Socin, R. J.Walters, L. K. (1968) Manual transmission synchronizers. SAE Transactions. 77, 31-65.
Tseng, C.-Y.Yu, C.-H. (2015) Advanced shifting control of synchronizer mechanisms for clutchless automatic manual transmission in an electric vehicle. Mechanism and Machine Theory. 84, 37-56. URL: https://doi.org/f6rt3j
Turner, A., Ramsay, K., Clark, R.Howe, D. (2007). Direct-drive rotary-linear electromechanical actuation system for control of gearshifts in automated transmissions. Proceedings of the 2007 IEEE Vehicle Power and Propulsion Conference. 267-272.
Vierk, D. T.Kowal, S. J. (2018) Composite friction and dog clutch.), US Patent 10,060,485.
Walker, P. D., Fang, Y.Zhang, N. (2017) Dynamics and control of clutchless automated manual transmissions for electric vehicles. Journal of Vibration and Acoustics. 139(6), 061005. DOI: https://doi.org/gkgmfh
Xu, X., Dong, P., Liu, Y.Zhang, H. (2018) Progress in automotive transmission technology. Automotive Innovation. 1, 187-210. DOI: https://doi.org/gp4pww