Coincidence of pressure pulsations with excitation of mechanical vibrations of hydraulic system components: An experimental study

Main Article Content

Michał Stosiak
Mykola Karpenko

Abstract

This paper discusses certain excitations that affect the components of hydraulic systems: pipes and valves. The negative effects of low-frequency noise and vibration on humans were also pointed out. Particular attention is given to the effect of pulsatile flow on the structure of hydraulic components. Pressure pulsations in a hydraulic system have been shown to generate and transmit mechanical vibrations across a wide spectrum of frequencies, and the negative consequences of this phenomenon have been pointed out. Based on the latest generation of proportional directional control valve, a special stand was built to generate pressure pulsations over a wide frequency range (up to 350 Hz). Amplitude-frequency spectra of mechanical vibrations and pressure pulsations were used instead of time courses in the considerations. The paper concludes that effort must be made to reduce the amplitudes of pressure pulsations in hydraulic systems, particularly in the low-frequency spectrum.

Article Details

How to Cite
Stosiak, M., Karpenko, M., & Deptuła, A. (2022). Coincidence of pressure pulsations with excitation of mechanical vibrations of hydraulic system components: An experimental study. Cognitive Sustainability, 1(2). https://doi.org/10.55343/cogsust.12
Section
Articles

References

Bury, P., Stosiak, M., Urbanowicz, K., Kodura, A., Kubrak, M., Malesińska, A. (2022). A Case Study of Open- and Closed-Loop Control of Hydrostatic Transmission with Proportional Valve Start-Up Process. Energies. 15, 1860. DOI: https://doi.org/hw7b

Chaban, R., Ghazy, A., Georgiade, E., Stumpf, N., Vahl, CF. (2021). Negative effect of high-level infrasound on human myocardial contractility: In-vitro controlled experiment. Noise Health. 23(109), 57–66.

Chenxiao, N., Xushe, Z. (2012). Study on Vibration and Noise for the Hydraulic System of Hydraulic Hoist. Proceedings of the 1st International Conference on Mechanical Engineering and Material Science. Published by Atlantis Press. DOI: https://doi.org/hw7c

Cichoń, P., Stosiak, M. (2011). Hydrauliczny wzbudnik drgań mechanicznych w technice proporcjonalnej. [Hydraulic mechanical vibration exciter in proportional technology]. Drives & Controls. 13(3), 142–148, (In Polish).

Engel, Z., Zawieska M. (2010). Hałas i drgania w procesach pracy: źródła, ocean, zagrożenia. [Noise and vibration in work processes: sources, evaluation, threats]. Central Institute for Labour Protection – National Research Institute, Warsaw. (In Polish).

Glanowski, G. (2001). Technika hydraulicznego sterowania proporcjonalnego [Hydraulic proportional control technology]. Hydraulics and Pneumatics. 1., 13-16 (In Polish).

Gryboś, R. (2005). Drgania konstrukcji wzbudzone przepływem. [Flow-induced vibrations of structures]. Silesian University of Technology Publishing House, Gliwice, (In Polish).

Gužas, D., Viršilas, R. (2009). Infrasound hazards for the environment and the ways of protection. Ultragarsas (Ultrasound). 64(3), 34-37.

Herok, S., Kudźma, Z., Stosiak, M. (2014). Stanowisko do wyznaczania charakterystyk statycznych i dynamicznych zaworów proporcjonalnych. [A stand for the determination of static and dynamic characteristics of proportional valves]. Measurements Automation, Robotics. 3, 112–119, (In Polish).

Hubballi, B., Sondur, V. (2017). Noise Control in Oil Hydraulic System. Proceedings of the 2017 International Conference on Hydraulics and Pneumatics-HERVEX. Published by - Hydraulics and Pneumatics Research Institute, Bucharest, Romania

- Chamber of Commerce and Industry Valcea, Romania. 54-63

Jesionek, K., Kollek, W., Stosiak, M. (2004a). Airtronics & hydrotronics. Proceedings IX. International Conference on the Theory of Machines and Mechanisms in association with the II. CEACM Conference Computational Mechanics. 397–402.

Jesionek, K., Kollek, W., Stosiak, M. (2004b). Fluid mechanics in mechatronics. Machine Dynamics Problems. 28(3), 157–162.

Kollek, W. (ed.) (2011). Podstawy projektowania, modelowania, eksploatacji elementów I układów mikrohydraulicznych. [Fundamentals of design, modelling and operation of microhydraulic components and systems]. Publishing House of Wrocław University of Science and Technology, Wrocław. (In Polish).

Kollek, W., Kudźma, Z., Stosiak, M., Mackiewicz, J. (2007). Possibilities of diagnosing cavitation in hydraulic systems. Archives of Civil and Mechanical Engineering. 7(1), 61–73. DOI: https://doi.org/gnrzp2

Kollek, W., Kudźma, Z., Stosiak, M. (2008). Propagacja drgań elementów nośnych maszyny roboczej ciężkiej. [Vibration propagation of load-bearing elements of a heavy-duty machine]. Industrial Transport and Working Machinery. 2, 50–53. (In Polish).

Kollek, W., Kudźma, Z., Rutański, J., Stosiak, M. (2010). Acoustic problems relating to microhydraulic components and systems. The Archive of Mechanical Engineering. 46(3), 293–307. DOI: https://doi.org/fv6bhq

Kudźma, Z. (2012). Tłumienie pulsacji ciśnienia I hałasu w układach hydraulicznych w stanach przejściowych I ustalonych. [Damping of pressure pulsations and noise in hydraulic systems in transient and steady states]. Publishing House of Wrocław University of Science and Technology, Wrocław. (In Polish).

Kudźma, Z., Stosiak, M. (2013). Praktyczne sposoby ograniczania hałaśliwości układów hydrostatycznych podczas rozruchu. [Practical ways to reduce the noise of hydrostatic systems during start-up]. Hydraulics & Pneumatics. 33(5), 18–23. (In Polish).

Kudźma, Z., Kułakowski, K., Stosiak, M. (2014). Wybrane problemy w eksploatacji układów mikrohydraulicznych. [Selected problems in the operation of micro-hydraulic systems]. Drives and Controls. 16(4), 78–83. (In Polish).

PN-ISO 9612:2004 Akustyka -- Wytyczne do pomiarów i oceny ekspozycji na hałas w środowisku pracy. [Acoustics – Principles for measuring and assessing exposure to noise in the working environment] (In Polish).

Stosiak, M. (2006). Wpływ drgań mechanicznych podłoża na pulsację ciśnienia w układzie hydraulicznym. [Influence of mechanical ground vibrations on pressure pulsation in a hydraulic system]. Hydraulics and Pneumatics. 3, 5–8. (In Polish).

Stosiak, M. (2015). The impact of hydraulic systems on the human being and the environment. Journal of Theoretical and Applied Mechanics. 53(2), 409–420. DOI: https://doi.org/hw7d

Stosiak M., Towarnicki K., Partyka M., Deptuła A. (2020). Analysis of the Impact of Vibrations on the Microhydraulic Pressure Relief Valve Taking into Account the Interval Classification of Induction Trees. Advances in Hydraulic and Pneumatic Drives and Control 2020 / Stryczek, J., Warzyńska, U. (eds). Lecture Notes in Mechanical Engineering. Springer. 311–322. DOI: https://doi.org/gmjvmm

Stryczek, S. (2014). Napęd hydrostatyczny. [Hydrostatic drive]. WNT, Warsaw. (In Polish).

Tomasiak, E. (2001). Interdyscyplinarność techniki sterowania proporcjonalnego. [Interdisciplinarity of proportional control technology]. Hydraulics and Pneumatics. 4. 20-25 (In Polish).

Tonin, R., Brett, J., Colagiuri, B. (2016). The effect of infrasound and negative expectations to adverse pathological symptoms from wind farms. Journal of Low Frequency Noise, Vibration and Active Control. 35(1), 77–90. DOI: https://doi.org/hw7f