Forecasting the number of road accidents caused by pedestrians in Poland using neural networks

Main Article Content

Piotr Gorzelańczyk

Abstract

Every year, fewer traffic accidents occur in Poland and throughout the world. Pandemics have recently impacted this number, but it is still relatively high. All efforts should be made to lower this figure. The article's main goal is to project the number of pedestrian-related traffic accidents in Poland based on yearly statistics. from 2001. A projection for the years 2024–2030 was created using police data. Various neural network models were employed to predict the number of incidents. The findings indicate that a stabilisation in traffic accidents is yet to be expected. One way to look at this is as a result of both Poland’s population reduction and the growing number of cars on the road. The number of random samples (training, test, and validation) selected has little effect on the outcomes (Road safety statistics in the EU, 2024, Poland Population, 2024, Poland Number of Registered, 2024).

Article Details

How to Cite
Gorzelańczyk, P. (2024). Forecasting the number of road accidents caused by pedestrians in Poland using neural networks. Cognitive Sustainability. https://doi.org/10.55343/cogsust.102
Section
Articles

References

Abdullah, E., Emam, A. (2017). Traffic accidents analyser using big data. 2015 International Conference on Computational Science and Computational Intelligence (CSCI). 392–397. DOI: https://doi.org/ms4z

Al-Madani, H. (2018). Global road fatality trends' estimates based on country-wise microlevel data. Accident Analysis & Preview. 111, 297–310, DOI: https://doi.org/gcz5cx

Arteaga, C., Paz, A., Park, J. (2020). Injury severity on traffic crashes: A text mining with an interpretable machine-learning approach. Safety Science. 132 (2020), Article 104988. DOI: https://doi.org/gm8njj

Bąk. I., Cheba, K., Szczecińska, B. (2019). The statistical analysis of road traffic in cities of Poland. Transportation Research Procedia. 39. 14–23. DOI: https://doi.org/ms4v

Baranyai, D., Sipos, T. (2022). Black-spot analysis in Hungary based on kernel density estimation. Sustainability. 14(14), 8335. DOI: https://doi.org/jswq

Biswas, A. A., Mia, J., Majumder, A. (2019). Forecasting the Number of Road Accidents and Casualties using Random Forest Regression in the Context of Bangladesh. 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT). 1–5. DOI: https://doi.org/mt6b

Chand, A., Jayesh, S., Bhasi, A. B. (2021). Road traffic accidents: An overview of data sources, analysis techniques and contributing factors. Materials Today: Proceedings. 47(15), 5135–5141. DOI: https://doi.org/gkcnd5

Chen, C. (2017). Analysis and forecast of traffic accident big data. ITM Web Conference. 12, 04029. DOI: https://doi.org/ms4w

Chudy-Laskowska, K., Pisula, T. (2015). Prognozowanie liczby wypadków drogowych na Podkarpaciu [Forecasting the number of road accidents in Subcarpathia]. Logistyka. 2015(4), 2782–2796. URL: https://www.researchgate.net/publication/316596821_Prognozowanie_liczby_wypadkow_drogowych_na_Podkarpaciu

Data mining techniques – Techniki zgłębiania danych (data mining) (n. d.). StatSoft. URL: https://www.statsoft.pl/textbook/stathome_stat.html?https%3A%2F%2Fwww.statsoft.pl%2Ftextbook%2Fstdatmin.html (Downloaded: 2 May 2022 10:43)

Dutta, B., Barman, M. P., Patowary, A. N. (2020). Application of Arima model for forecasting road accident deaths in India. International Journal of Agricultural and Statistical Sciences. 16(2), 607–615. URL: https://connectjournals.com/03899.2020.16.607

Forecasting based on time series – Prognozowanie na podstawie szeregów czasowych (n. d.). URL: http://pis.rezolwenta.eu.org/Materialy/PiS-W-5.pdf (Downloaded: 2 May 2022 10:43)

Gorzelanczyk, P., Pyszewska, D., Kalina, T., Jurkovic, M. (2020). Analysis of road traffic safety in the Piła Poviat. Scientific Journal of Silesian University of Technology. Series Transport. 107, 33–52. DOI: https://doi.org/ms4x

Helgason, A. (2016). Fractional integration methods and short time series: evidence from a simulation study. Political Analysis. 24(1), 59–68. URL: http://www.jstor.org/stable/24573204

Karlaftis M., Vlahogianni E. (2009). Memory properties and fractional integration in transportation time-series. Transportation Research, Part C: Emerging Technologies. 17(4), 444–453. DOI: https://doi.org/c3x6wb

Kashpruk, N. (2020). Comparative research of statistical models and soft computing for identification of time series and forecasting. Opole University of Technology. URL: https://dbc.wroc.pl/Content/108023/Praca%20Doktorska_%20Nataliia%20Kashpruk_popr.pdf

Khaliq, K. A., Chughtai, O., Shahwani, A., Qayyum, A., Pannek, J. (2019). Road accidents detection, data collection and data analysis using V2X communication and edge/cloud computing. Electronics. 8(8). DOI: https://doi.org/ms42

Kumar, S., Viswanadham, V., Bharathi, B. (2019). Analysis of road accident. IOP Conference Series Materials Science and Engineering. 590(1): 012029. DOI: https://doi.org/ms43

Lavrenz, S., Vlahogianni, E., Gkritza, K., Ke, Y. (2018). Time series modeling in traffic safety research. Accident Analysis & Prevention. 117, 368–380. DOI: https://doi.org/gdvwn3

Lake, B. M., Ullman, T. D., Tenenbaum, J. B., & Gershman, S. J. (2017). Building machines that learn and think like people. Behavioral and brain sciences, 40, e253. DOI: https://doi.org/mzpk

Łobejko, S. (ed.) (2015). Time series analysis and forecasting with SAS. Publisher: SGH, Warszawa.

Mamczur, M. (2020). Jak działa regresja liniowa? I czy warto ją stosować? [How does linear regression work? And is it worth using?]. URL: https://miroslawmamczur.pl/jak-dziala-regresja-liniowa-i-czy-warto-ja-stosowac/ (Downloaded: 2 May 2022 10:43)

McIlroy, R. C., Plant, K. A., Hoque, M. S., Wu J., Kokwaro, G. O., Nam, V. H., Stanton, N. A. (2019). Who is responsible for global road safety? A cross-cultural comparison of Actor Maps. Accident Analysis & Prevention. 122, 8–18. DOI: https://doi.org/gfpgvt

Mekonnen, A. A., Beza, A. D., Sipos, T. (2022). Estimating the Value of Statistical Life in a Road Safety Context Based on the Contingent Valuation Method. Journal of Advanced Transportation, Article 3047794. DOI: https://doi.org/kc3r

Monedero B. D., Gil-Alana L. A., Martíneza M. C. V. (2021).Road accidents in Spain: Are they persistent? IATSS Research. 45(3), 317–325. DOI: https://doi.org/ms44

Oronowicz-Jaśkowiak W. (2019). The application of neural networks in the work of forensic experts in child abuse cases. Advances in Psychiatry and Neurology. 28(4), 273–282. DOI: https://doi.org/ms45

Perczak G., Fiszeder P. (2014). Model GARCH− wykorzystanie dodatkowych informacji o cenach minimalnych i maksymalnych [GARCH model – using additional information on minimum and maximum prices]. Bank i Kredyt. 45(2), 105–132.

Piłatowska M. (2012). Wybór rzędu autoregresji w zależności od parametrów modelu generującego [The choice of the order of autoregression depending on the parameters of the generating model]. Ekonometria. 4(38), 16–35. URL: https://dbc.wroc.pl/Content/22753/Pilatowska_Wybor_Rzedu_Autoregresji_w_Zale%C5%BCnosci_Od_Parametrow.pdf

Poland Number of Registered Vehicles URL: https://www.ceicdata.com/en/indicator/poland/number-of-registered-vehicles (Downloaded: 28 May 2024 15:43)

Poland Population URL: https://www.worldometers.info/world-population/poland-population/ (Downloaded: 28 May 2024 15:43)

Prochazka J., Camaj M. (2017). Modelling the number of road accidents of uninsured drivers and their severity. Proceedings of International Academic Conferences. 5408040. URL: https://ideas.repec.org/p/sek/iacpro/5408040.html

Procházka J., Flimmel S., Čamaj M., Bašta M. (2017). Modelling the Number of Road Accidents. 20-th AMSE. Applications of Mathematics and Statistics in Economics. International Scientific Conference. Proceedings – Full Text Papers. 355–364. DOI: https://doi.org/ms46

Rajput H., Som, T., Kar, S. (2015). An automated vehicle license plate recognition system. Computer. 48(8), 56–61. DOI: https://doi.org/ms47

Random forest – Las losowy (n. d.) URL: https://pl.wikipedia.org/wiki/Las_losowy (Downloaded: 2 May 2022 10:43)

Road Accident Statistics (2024). Statystyka. URL: https://statystyka.policja.pl (Downloaded: 2 May 2024 10:43)

Road safety statistics in the EU, (2024) URL: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Road_safety_statistics_in_the_EU&oldid=630784 (Downloaded: 28 May 2024 15:43)

Sunny C.M., Nithya S., Sinshi K.S., Vinodini V.M.D.; Lakshmi A.K.G., Anjana S., Manojkumar T.K. Forecasting of Road Accident in Kerala: A Case Study. 2018 International Conference on Data Science and Engineering (ICDSE). DOI: https://doi.org/ms48

Szmuksta-Zawadzka M., Zawadzki J. (2009). Forecasting on the basis of Holt-Winters models for complete and incomplete data. Research papers of the Wrocław University of Economics. 38. URL: https://www.dbc.wroc.pl/Content/15648/Szmuksta-Zawadzka_Zawadzka_O_prognozowaniu_na_podstawie_modeli.pdf

Tambouratzis T., Souliou D., Chalikias M., Gregoriades A. (2014). Maximising accuracy and efficiency of traffic accident prediction combining information mining with computational intelligence approaches and decision trees. Journal of Artificial Intelligence and Soft Computing Research. 4(1), 31–42. DOI: https://doi.org/ms49

Top Advantages and Disadvantages of Hadoop 3 (n. d.) DataFlair URL: https://data-flair.training/blogs/advantages-and-disadvantages-of-hadoop/ (Downloaded: 2 May 2022 10:43)

Vilaça M., Silva N., Coelho M. C. (2017). Statistical analysis of the occurrence and severity of crashes involving vulnerable road users. Transport Research Procedia. 27, 1113–1120, DOI: https://doi.org/ms5b

WHO (2018). The global status on road safety. URL: https://www.who.int/publications/i/item/9789241565684 (Downloaded: 2 May 2022 10:43)

Wójcik A. (2014). Autoregressive vector models as a response to the critique of multi-equation structural econometric models. Publishing House of the University of Economics in Katowice. Vol. 193.

Wrobel M. S. (2011). Application of neural fuzzy systems in chemistry. PhD thesis. University of Silesia, Katowice. URL: https://rebus.us.edu.pl/bitstream/20.500.12128/5266/1/Wrobel_Zastosowanie_neuronowych_systemow.pdf

Yang Z. Zhang W., Feng J. Predicting multiple types of traffic accident severity with explanations: A multi-task deep learning framework. Safety Science. 146, 105522. DOI: https://doi.org/gnxr67

Zheng Z., Wang C., Wang P., Xiong Y., Zhang F., Lv Y. (2018). Framework for fusing traffic information from social and physical transportation data. PLoS One, 13. DOI: https://doi.org/gd2dm2

Zhu L., Lu L., Zhang W., Zhao Y., Song M. (2019). Analysis of accident severity for curved roadways based on Bayesian networks. Sustainability. 11(8), 2223. DOI: https://doi.org/ms5c