Cognitive Sustainability
Main Article Content
Abstract
Sustainability is a crucial dimension of our life at the beginning of the third millennium. Our society transforms and changes even faster and more continuously than at any time earlier. Our work aims to define a new concept: the cognitive sustainability domain. Several fields of science were explored to recognize how the interdisciplinary approach of cognitive sustainability is valid. The former joint use of cognitivity and sustainability was reviewed in the literature as well. Results showed that digital development lets us extend our experiential cognition in most fields of our lives. Limits of the available resources and the development of cognitive functionalities are the enablers to connecting and addressing sustainability. Main dimensions and parameters of cognitive sustainability were identified, and several key research areas were defined. The structured handling of cognitive tools within sustainability results in a broader interpretation framework for analyzing, understanding and developing processes in sustainability.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access). As soon as the paper is accepted, finally submitted and edited, the paper will appear in the "OnlineFirst" page of the journal, thus from this point no other internet-based publication is necessary.
References
Bateson, G. (1972). Steps to an Ecology of Mind. Chandler Publishing Company, New York, NY.
Bertotto, B., Pohlmann, M., Silva, F. (2014). The dimensions of sustainability: concepts and strategies in the textile and clothing supply chain in Brazil. KES Transactions on Sustainable Design and Manufacturing, Sustainable Design and Manufacturing. Paper sdm14-029. 218–229.
Bibri, S. E. (2019) On the sustainability of smart and smarter cities in the era of big data: an interdisciplinary and transdisciplinary literature review. Journal of Big Data. 6(25). DOI: https://doi.org/gf2ffj
Bolton, P., Despres, M., Da Silva, L. A. P., Samama, F., Svartzman, R. (2020). The green swan – Central banking and financial stability in the age of climate change. January 2020. BIS 2020. URL: https://www.bis.org/publ/othp31.pdf (Downloaded: 2 March 2022 11:44)
Börcsök, E., Ferencz, Z., Groma, V., Gerse, Á., Fülöp, J., Bozóki, S., Osán, J., Török, S., Horváth, Á.(2020). Energy Supply Preferences as Multicriteria Decision Problems: Developing a System of Criteria from Survey Data. Energies. 13(15, 3767. DOI: https://doi.org/hg4j
Bruni, L. E. (2010). Cognitive Sustainability in the Age of Digital Culture. Proceedings of the 4th International Conference on the Foundations of Information Science. Beijing, 21–24 August 2010, MDPI, Basel, Switzerland. DOI: https://doi.org/hg4k
Cao, H., Zöldy, M. (2019). An Investigation of Autonomous Vehicle Roundabout Situation. Periodica Polytechnica Transportation Engineering. 48(3), 236–241. DOI: https://doi.org/hg4m
Fleischer T. (2014). A fenntarthatóság fogalmáról. Közszolgálat és fenntarthatóság. 9–24. URL: http://real.mtak.hu/id/eprint/18404 (Downloaded: 2 March 2022 12:43)
Hammond, G. P. (2006). ‘People, planet and prosperity’: The determinants of humanity’s environmental footprint. Natural Resources Forum. 30, 27–36.
Hussen, A. M. (2013). Principles of Environmental Economics and Sustainability, 3th ed. Routledge, New York, NY .
IMF (2021). 2021 Comprehensive Surveillance Review – Overview Paper. IMF Policy Paper. May 2021. https://www.imf.org/en/Publications/Policy-Papers/Issues/2021/05/18/2021-Comprehensive-Surveillance-Review-Overview-Paper-460270
IPCC (2019). Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. [P.R. Shukla, J. Skea, E. Calvo Buendia, V. Masson-Delmotte, H.-O. Pörtner, D. C. Roberts, P. Zhai, R. Slade, S. Connors, R. van Diemen, M. Ferrat, E. Haughey, S. Luz, S. Neogi, M. Pathak, J. Petzold, J. Portugal Pereira, P. Vyas, E. Huntley, K. Kissick, M. Belkacemi, J. Malley, (eds.)]. URL: https://www.ipcc.ch/srccl/ (Downloaded: 2 March 2022 12:43)
IPCC (2021). Summary for Policymakers. In: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. [Masson-Delmotte, V., P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu and B. Zhou (eds.)]. Cambridge University Press, Cambridge. URL: https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_SPM_final.pdf (Downloaded: 2 March 2022 12:43)
Lakatos, I., Szauter, F., Pup, D., Nagy, A. (2020). Alternative Propulsion Buses in the Metropolitan Public Transport. Vehicle and Automotive Engineering (pp. 49-66). Springer. DOI: https://doi.org/hjg3
Liu, L. (2019). Sustainability: living within one’s own ecological means. Sustainability. 2009(1), 1412–1430. DOI: https://doi.org/bm97mf
Lotman, J. (2005/1984). On the Semiosphere. Sign Systems Studies. 33(1), 205–229.
Luke, T. W. (2005). Neither sustainable nor development: reconsidering sustainability in development. Sustainable Development. 13(4), 228–238. DOI: https://doi.org/fmdq23
Manaugh, G. (2007). Without Walls: An Interview with Lebbeus Woods. Interview with Geoff Manaugh. www.bldgblog.com. October 3, 2007. URL: https://bldgblog.com/2007/10/without-walls-an-interview-with-lebbeus-woods/ (Downloaded: 1 March 2022 12:43)
Meadows, D. H., Meadows D. L., Randers J., Behrens, W. W. (1972). The limits to growth. A Potomac Associates book. Universe Books, New York, NY.
Ramsey, J. L. (2015). On not defining sustainability. Journal of Agricultural and Environmental Ethics. 28, 1075–1087. DOI: https://doi.org/f72bpx
Ruggerio, C. A. (2021). Sustainability and sustainable development: A review of principles and definitions. Science of the Total Environment. 786, 147481. DOI: https://doi.org/hjfh
Sauvé, S., Bernard, S., Sloan, P. (2016). Environmental sciences, sustainable development and circular economy: alternative concepts for trans-disciplinary research. Environmental Development. 17, 48–56. DOI: https://doi.org/gfwnzq
Stern (2006). The Stern Review on the Economic Effects of Climate Change. Population and Development Review. 32(4), 793–798. DOI: https://doi.org/d3527w
Stern, D. I., Common, M. S., Barbier, E. B. (1996). Economic growth and environmental degradation: the environmental Kuznets curve and sustainable development. World Development. 24, 1151–1160. DOI: https://doi.org/fp8s3s
Söderholm, P. (2020). The green economy transition: the challenges of technological change for sustainability. Sustainable Earth 2020. 3(6). DOI: https://doi.org/gjbxj7
Szalmáné Csete, M. (2021). Sustainable smart cities and cognitive mobility. In: Nikodem, J., Klempous, R (eds), 12th IEEE International Conference on Cognitive Infocommunications (CogInfoCom 2021). Proceedings IEEE. 975–981.
Szenthe, G. (2021). An overview of mobility in archeology with a case study from the Early Middle Ages. In: Nikodem, J., Klempous, R. (eds), 12th IEEE International Conference on Cognitive Infocommunications (CogInfoCom 2021). Proceedings IEEE. 951–959.
Valeika, G., Matijošius, J., Górski, K., Rimkus, A., Smigins, R. (2021). A Study of Energy and Environmental Parameters of a Diesel Engine Running on Hydrogenated Vegetable Oil (HVO) with Addition of Biobutanol and Castor Oil. Energies. 14, 3939. DOI: https://doi.org/gmqbg6
van Dam, Y. K., van Trijp, J. C. M. (2011). Cognitive and Motivational Structure of Sustainability. Journal of Economic Psychology. 32(5), 726–741. DOI: https://doi.org/cfgv4c
Virág B. (2019). Long-Term Sustainable Econo-mix. MNB, Budapest. URL: https://www.mnb.hu/en/publications/mnb-book-series/long-term-sustainable-econo-mix (Downloaded: 28 February 2022)
WCED (1987). Our Common Future – Brundtland Report. Oxford University Press, London. DOI: https://doi.org/df9xg9
Whyte, P., Lamberton, G., (2020). Conceptualising sustainability using a cognitive mapping method. Sustainability. 12(5), 1977. DOI: https://doi.org/hjfj
WWF (2021). Enabling the Transition: Climate Innovation Systems for a Low-Carbon Future. WWF, Solna.
Zöldy, M., Baranyi, P. (2021). Cognitive Mobility – CogMob. In: Nikodem, J., Klempous, R. (eds), 12th IEEE International Conference on Cognitive Infocommunications (CogInfoCom 2021). Proceedings IEEE. 921–925.
Zöldy, M., Zsombók, I. (2018). Modelling fuel consumption and refuelling of autonomous vehicles. In: MATEC Web of Conferences. 235, 00037. EDP Sciences. DOI: https://doi.org/hbkv
Zsombok I. (2019). Fogyasztásmérések fejlesztése tesztpályás mérésekhez [Development vehicle test procedure for proving ground measurements]. : Műszaki Szemle [Technical Review]. 74, 40–47. URL: https://ojs.emt.ro/index.php/muszakiszemle/article/view/254 (Downloaded: 1 March 2022 10:43)