Design aspects for in-vehicle IPM motors for sustainable mobility
Main Article Content
Abstract
In battery electric vehicles, permanent magnet synchronous IPM motors are gaining more and more ground due to their high power density and high-efficiency operation. Many research examine their specific characteristics. In order to reach a desired total torque, low torque ripple, high efficiency, many pre-plannings have to be executed. The modern age engineering industry can rely much on complex simulation software, such as MotorAnalysis – PM. In this paper, an initial IPM motor design with delta magnet arrangement was created for vehicle application. This study had a strong focus on finding correlation between rotor layout arrangement and crucial motor operationial attributes, such as: torque components, torque ripple, cogging torque and efficiency. Time stepping magnetostatics FE and time stepping transient FE simulations were used. Each arrangement changement held its own simulation file, thus the effect of each change could have been separately examined. Arrangements, where the distance between magnets is smaller, resulted in greater torque and efficiency. Usage of enlarged magnets had the same results. Size should be increased and distance should be decreased with care to avoid a growth in torque ripple.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access). As soon as the paper is accepted, finally submitted and edited, the paper will appear in the "OnlineFirst" page of the journal, thus from this point no other internet-based publication is necessary.
References
Albatayneh, A., Assaf N. M., Alterman, D., Jaradat, M. (2020). Comparison of the Overall Energy Efficiency for Internal Combustion Engine Vehicles and Electric Vehicles. Environmental and Climate Technologies, 24, 669 – 680. https://doi.org/hgv2
Artetxe, G., Paredes, J., Prieto, B., Martinez-Iturralde, M., Elosegui I. (2018). Optimal Pole Number and Winding Designs for Low Speed-High Torque Synchronous Reluctance Machines. Energies, 11, 128. https://doi.org/gc6pt8
Brenner, R. D. (2009). Bridge Stresses and Design in IPM Machines. IEEE. https://doi.org/dw3cbv
Fang, L., Hong, J. P. (2009). Flux-barrier design technique for improving torque performance of interior permanent magnet synchronous motor for driving compressor in HEV. IEEE 2009, 978-1-4244-2601-0. https://doi.org/cqhnb7
Hemsen, J., Kieninger, D., Eckstein, L., Lidbeg, R. M., Huisman, H., Arrozy, J., Lomonova, A. E., Oeschger, D., Lanneluc, C., Tosoni, O., Debal, P., Ernstorfer, M., Mongellaz, R. (2019). Innovative and Highly Integrated Modular Electric Drivetrain. World Electric Vehicle Journal 2019, 10, 89. https://doi.org/ggff77
Hwang, M-H., Han, J-H. Kim, D-H. Cha, H-R. (2018a). Design and Analysis of Rotor Shapes for IPM Motors in EV Power Traction Platforms. Energies, 2018, 11, 2601. https://doi.org/gfqfm4
Hwang, M-H., Lee, H-S., Cha, H-R. (2018). Analysis of Torque Ripple and Cogging Torque Reduction in Electric Vehicle Traction Platform Applying Rotor Notched Design. Energies 2018, 11, 3053. https://doi.org/hgv7
Karki, A., Phuyal, S., Tuladhar, D., Basnet, S., Shrestha, B. P. (2020). Status of Pure Electric Vehicle Power Train Technology and Future Prospects. Applied System Innovation 2020, 3, 35. https://doi.org/hgv5
Kuptsov, V., Fajri, P., Trzynadlowski, A., Zhang, G., Magdanelo-Adame, S. (2018). Electromagnetic Analysis and Design Methodology for Permanent Magnet Motors Using MotorAnalysis-PM Software. Machines 2019, 7(4), 75. https://doi.org/hgwb
Lim, S., Min, S., Hong, J-P. (2015). Design of IPM Motor for Improving Torque Considering Thermal Demagnetization of Magnet. Transactions on Magnets, 51, 1-5. https://doi.org/f7bwxf
Lundmark, S. T., Alatalo, M., Thiringer, T., Grunditz, E. A., Mellander, B-E. (2013). Vehicle Components and Configurations. In Sandén, B. (ed.): Systems Perspectives on Electromobility, 22–32. Chalmers University of Technology, Göteborg, Sweden, 2013
Ma, F., Yin, H., Wei, L., Tian, G., Gao, H. (2018). Design and Optimisation of IPM Motor Considering Flux Weakening Capability and Vibration for Electric Vehicle Applications. Sustainability, 10, 1533. https://doi.org/gdtf2h
Md. Ahssan, R., Ektesabi, M. M., Gorji, S. A. (2018). Electric Vehicle with Multi-Speed Transmission: A Review on Performances and Complexities. SAE Int. J. Alt. 7(2), 169–181. https://doi.org/hgv6
Mészáros, F., Shatanawi, M., Ogunkunbi, G. A. (2021). Challenges of the Electric Vehicle Markets in Emerging Economies. Periodica Polytechnica Transportation Engineering, 49 (1), 93-101. https://doi.org/hgvz
Mihály, A., Németh, B., Gáspár, P. (2014). Integrated vehicle control of in-wheel electric vehicle. Periodica Polytechnica Transportation Engineering, 42 (1), 19-25. https://doi.org/hgv4
Nyerges, Á. (2021). Elektromos személygépjárművek energiafogyasztásának vizsgálata [Consumption analysis of electric vehicle drivetrains]. XXIX. OGÉT International Mechanical Engineering Conference https://ojs.emt.ro/oget/article/view/494/433
Nyerges, Á., Zöldy, Máté. (2020). Hosszirányú járműmodell fejlesztése elektromos járművek hatótáv becslésére [Longitudinal vehicle model development for range estimation in electric vehicles]. Műszaki Szemle, 74. https://ojs.emt.ro/index.php/muszakiszemle/article/view/258
Nyitrai, A., Orosz, T. (2021). FEM-Based Benchmark Problem for Cogging Torque Minimization of Axial Flux Permanent Magnet Motors in Artap Framework. Periodica Polytechnica Electrical Engineering and Computer Science 65(2), 152-159. https://doi.org/hgv9
Pyrhöhen, J., Jokinen, T., Hrabovcová, V. (2014). Design of Rotating Electrical Machines, 2nd ed. John Wiley & Sons Ltd. Chichester, United Kingdom, 2014; pp. 293-331.
Sanguesa A. J.. Torres-Sanz, V., Garrido, P., Martinez J. F., Marquez-Barja M. J. (2021). A Review on Electric Vehicles: Technologies and Challenges. Smart Cities 2021, 4, 372-404. https://doi.org/gmpwtr
Sayed, E., Yang, Y., Bilgin, B., Bakr, M. H., Emadi, A. (2019). A Comprehensive Review of Flux Barriers in Interior Permanent Magnet Synchronous Machines. IEEE Access, 2169-3536. https://doi.org/hgwc
Torok, A., Derenda, T., Zanne, M., Zoldy, M. (2018). Automatization in road transport: a review. Production Engineering Archives, 2020, 3-7. https://doi.org/f9vw
Un-Noor, F., Padmanaban, S., Mihet-Popa, L., Mollah, M. N., Hossain, E. (2017). A Comprehensive Study of Key Electric Vehicle (EV) Components, Technologies, Challenges, Impacts, and Future Direction of Development. Energies, 10, 1217. https://doi.org/gctpfg
Vepachedu, S. (2017). The history of the electric car. The Andhra Journal of Industry, 1 September 2017.
Yang, Y., Castano, S., Yang, R., Kaprzak, M., Bilgin, B., Sathyan, A., Dadklah, H., Emadi, A. (2016). Design and Comparison of Interior Permanent Magnet Motor Topologies for Traction Applications. IEEEI, 2016, 2332-7782. https://doi.org/hgv8
Young-Kyun, J., Jong-Seok, L., Taewon, L. (2015). Design of a Novel SiC MOSFET Structure for EV Inverter Efficiency Improvement. World Electric Vehicle Journal, 7, 2032-6653. https://doi.org/hgv3
Zöldy M. (2018). Legal Barriers of Utilization of Autonomous Vehicles as Part of Green Mobility. Proceedings of the 4th International Congress of Automotive and Transport Engineering (AMMA). 243–248. https://doi.org/f9wp
Zöldy, M., Zsombók, I. (2018). Modelling fuel consumption and refuelling of autonomous vehicles. MATEC Web Conferences. 235. https://doi.org/hbkv