Cognitive tools for enhancing sustainability in liquid fuel and internal combustion engine development

Main Article Content

Olga Orynycz

Abstract

This paper reviews the literature on cognitive tools applied in developing internal combustion engines (ICE) and liquid fuels, focusing on modeling, simulation, data collection, and AI applications. Methods include 0D and 1D models, 3D-CFD (Computational Fluid Dynamics) simulations, real-world calculations, advanced data acquisition, and AI frameworks. Results indicate that these tools enhance development efficiency, reduce environmental impact, and promote sustainable technologies. The conclusion highlights the transformative potential of cognitive tools for sustainable mobility solutions.

Article Details

How to Cite
Orynycz , O. (2024). Cognitive tools for enhancing sustainability in liquid fuel and internal combustion engine development. Cognitive Sustainability, 3(4). https://doi.org/10.55343/cogsust.135
Section
Articles

References

Agocs, A., Nagy, A. L., Ristic, A., Tabakov, Z. M., Raffai, P., Besser, C., Frauscher, M. (2023). Oil Degradation Patterns in Diesel and Petrol Engines Observed in the Field – An Approach Applying Mass Spectrometry. Lubricants. 11(9), 404. DOI: https:/doi.org/10.3390/lubricants11090404

Bhatt, A. N., Shrivastava, N. (2022). Application of Artificial Neural Network for Internal Combustion Engines: A State of the Art Review. Archives of Computational Methods in Engineering. 29, 897–919. DOI: https:/doi.org/10.1007/s11831-021-09596-5

Chiodi, M., Tortorella, C., Haro, E. H., Pipolo, M. (2024). Advancing Internal Combustion Engines and Fuel Innovation: A Modular Approach to 3D Virtual Prototyping for a Carbon-Neutral Future. In: Kulzer, A. C., Reuss, H. C., Wagner, A. (eds) 2024 Stuttgart International Symposium on Automotive and Engine Technology. ISSYM 2024. Proceedings. Springer Vieweg, Wiesbaden. 85–101. DOI: https:/doi.org/10.1007/978-3-658-45010-6_6

Cipriano, E., da Silva Major, T. C. F., Pessela, B., Barros, A. A. C. (2022). Production of Anhydrous Ethyl Alcohol from the Hydrolysis and Alcoholic Fermentation of Corn Starch. Cognitive Sustainability. 1(4). DOI: https:/doi.org/10.55343/cogsust.36

Kaisan, M. U., Abubakar, S., Umaru, S., Dhinesh, B., Mohamed Shameer, P., Sekar, K., Nishath, P. M., Senophiyah, M. J. (2020). Comparative Analysis of Experimental and Simulated Performance and Emissions of Compression Ignition Engine Using Biodiesel Blends. In Ghosh, S. K. (ed.): Energy Recovery Processes from Wastes. Springer Singapore. 85–100.

Ker S., Guillemin F., Duval L. (2006) Combustion diagnosis for internal combustion engines with real-time acquisition and processing. Proceedings of ISP 2006. URL: http://laurent-duval.eu/Articles/Ker_S_2006_p-isma_combustion_dicertap-combustion-diagnostic-engine-real-time-acquisition-processing.pdf

Kondor, I. P. (2024). Experimental Investigation on the Effect of Heating Oil and Tyre Pyrolysis Oil Combustion in an Evaporative Combustion Chamber. Fuels. 5(2), 210–221. DOI: https:/doi.org/10.3390/fuels5020012

Kumar, S., Sharma, P., Pal, K. (2023). Application of Machine Learning Approach in Internal Combustion Engine: A Comprehensive Review. In: Kumar, A., Zunaid, M., Subramanian, K.A., Lim, H. (eds). Recent Advances in Manufacturing and Thermal Engineering. RAMMTE 2022. Lecture Notes in Mechanical Engineering. Springer, Singapore. 165–178. DOI: https:/doi.org/10.1007/978-981-19-8517-1_12

Kuzhagaliyeva, N., Horváth, S., Williams, J., Nicolle, A., Saratrhy, S. M. (2022). Artificial intelligence-driven design of fuel mixtures. Communications Chemistry. 5, 111. DOI: https:/doi.org/10.1038/s42004-022-00722-3

Mrdja P., Milji N., Popovic S., Kitanovic M. (2019). Internal Combustion Engine Test Bench Control, Data Acquisition, and Engine Control Unit Calibration. National Instruments. URL: https://www.ni.com/en/solutions/transportation/case-studies/internal-combustion-engine-test-bench-control-data-acquisition.html?srsltid=AfmBOooJPCSNJw2Vrlay5Rb562Q_q1QKSAX7maT6YagoNiGB0o7Yy4JJ

Nagy, A. L. (2019). Development of an artificial aging process for automotive lubricants. Spring Wind Conference, Debrecen 2019. 771–775. URL: https://www.researchgate.net/publication/342832489_Development_of_an_artificial_aging_process_for_automotive_lubricants

Nyerges, A., Zöldy, M. (2020). Model development and experimental validation of an exhaust brake supported dual loop exhaust gas recirculation on a medium duty Diesel engine. Mechanics. 26(6), 486–496. DOI: https:/doi.org/10.5755/j01.mech.26.6.25017

Shepel, O., Matijošius, J., Rimkus, A., Orynycz, O., Tucki, K., Świć, A. (2022). Combustion, ecological, and energetic indicators for mixtures of hydrotreated vegetable oil (HVO) with duck fat applied as fuel in a compression ignition engine. Energies. 15(21), 7892. DOI: https:/doi.org/10.3390/en15217892

Valeika, G., Matijošius, J., Orynycz, O., Rimkus, A., Kilikevičius, A., Tucki, K. (2024). Compression Ignition Internal Combustion Engine's Energy Parameter Research Using Variable (HVO) Biodiesel and Biobutanol Fuel Blends. Energies. 17(1), 262. DOI: https:/doi.org/10.3390/en17010262

Virt, M., Arnold, U. (2022). Effects of oxymethylene ether in a commercial diesel engine. Cognitive Sustainability. 1(3). DOI: https:/doi.org/10.55343/cogsust.20

Wentsch, M. (2019). Simulation of Internal Combustion Engines. In: Wentsch, M.: Analysis of Injection Processes in an Innovative 3D-CFD Tool for the Simulation of Internal Combustion Engines. Wissenschaftliche Reihe Fahrzeugtechnik Universität Stuttgart. Springer Vieweg, Wiesbaden. 7–20. DOI: https:/doi.org/10.1007/978-3-658-22167-6_2

Zöldy, M. (2009). Potential future renewable fuel challenges for internal combustion engine. Járművek és Mobilgépek. 2(4), 397–403.

Zöldy, M., Baranyi, P. (2023). The Cognitive Mobility Concept. Infocommunications Journal (HTE), (SP), 35–40. DOI: https:/doi.org/10.36244/ICJ.2023.SI-IODCR.6

Zöldy, M., Baranyi, P., Török, Á. (2024). Trends in Cognitive Mobility in 2022. Acta Polytechnica Hungarica. 21(7), 189–202. DOI: https:/doi.org/10.12700/APH.21.7.2024.7.11

Yakovlieva, A., Boichenko, S., Zaremba, J. (2019). Improvement of Air Transport Environmental Safety by Implementing Alternative Jet Fuels. 2019 Modern Safety Technologies in Transportation (MOSATT) Conference. 424. DOI: https:/doi.org/10.1109/MOSATT48908.2019.8944122