Enhancing Low Temperature Combustion Through the Application of Alcohol Blends

Main Article Content

Márton Virt
Máté Zöldy

Abstract

Future road transportation requires innovative propulsion technologies to address the environmental issues associated with internal combustion engines. Low temperature combustion (LTC) is a new, highly investigated technology capable of simultaneously reducing nitrogen oxide and particulate matter emissions. However, the low combustion temperature in LTC can impair oxidation, limiting its effectiveness under various operating conditions. This paper aims to investigate the effects of oxygenates, particularly alcohols, on LTC to mitigate oxidation difficulties. To demonstrate the effects of alcohols, modulated kinetics (MK) type LTC was achieved in an unmodified diesel engine by applying high rates of low-pressure exhaust gas recirculation at three different loads at 1250 rpm. The combustion and emission characteristics of the engine were evaluated during MK operation using a diesel reference fuel, a diesel-alcohol blend with 30% ethanol, and another diesel-alcohol blend with 30% 2-ethylhexanol. Both alcohols reduced particulate matter emissions and enabled a higher LTC operating range. It was concluded that introducing oxygenated fuels could be advantageous when commercial vehicles utilizing LTC become prevalent, as new combustion technologies necessitate fuels with specific characteristics for optimal performance.

Article Details

How to Cite
Virt, M., & Zöldy, M. (2024). Enhancing Low Temperature Combustion Through the Application of Alcohol Blends. Cognitive Sustainability, 3(3). https://doi.org/10.55343/cogsust.121
Section
Articles

References

Agarwal, A. K., Chandra, K. (2022). Di-ethyl ether-diesel blends fuelled off-road tractor engine: Part-I: Technical feasibility. Fuel. 308, 121972. DOI: https://doi.org/nj9z

Agarwal, A. K., Singh, A. P., Maurya, R. K. (2017). Evolution, challenges and path forward for low temperature combustion engines. Progress in Energy and Combustion Science. 61, 1–56. DOI: https://doi.org/m5vx

Duan, X. Lai, M., Jansons, M., Guo, G., Liu, J. (2021). A review of controlling strategies of the ignition timing and combustion phase in homogeneous charge compression ignition (HCCI) engine. Fuel. 285, 119142. DOI: https://doi.org/gm2qng

Hasan, A. O., Osman, A. I., Al-Muhtaseb, A. H., Al-Rawashdeh, H., Abu-jrai, A., Ahmad, R., Gomaa, M. R., Deka, T. J., Rooney, D. W. (2021). An experimental study of engine characteristics and tailpipe emissions from modern DI diesel engine fuelled with methanol/diesel blends. Fuel Processing Technology. 220, 106901. DOI: https://doi.org/gj5zft

Heywood, J.B. (1988). Internal Combustion Engine Fundamentals. McGraw-Hill: New York, NY, USA

Hoang, A. T. (2020). Critical review on the characteristics of performance, combustion and emissions of PCCI engine controlled by early injection strategy based on narrow-angle direct injection (NADI). Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. 1–15. DOI: https://doi.org/ghwcdn

Krishnamoorthi, M., Malayalamurthi, R., He, Z. Kandasamy, S. (2019). A review on low temperature combustion engines: Performance, combustion and emission characteristics. Renewable and Sustainable Energy Reviews. 116, 109404. DOI: https://doi.org/m5v2

Lawler, B., Splitter, D., Szybist, J., Kaul, B. (2017). Thermally Stratified Compression Ignition: A new advanced low temperature combustion mode with load flexibility. Applied Energy. 189, 122–132. DOI: https://doi.org/nj93

Lee, Y., Huh, K. Y. (2014) Analysis of different modes of low temperature combustion by ultra-high EGR and modulated kinetics in a heavy duty diesel engine. Applied Thermal Engineering. 70(1), 776–787. DOI: https://doi.org/f6gnm2

Li, J., Yang, W., Zhou, D. (2017). Review on the management of RCCI engines. Renewable and Sustainable Energy Reviews. 69(C), 65–79. DOI: https://doi.org/f9qwz8

Liu, J., Wang, L., Wang, P., Sun, P., Liu, H., Meng, Z., Zhang, L., Ma, H. (2022). An overview of polyoxymethylene dimethyl ethers as alternative fuel for compression ignition engines. Fuel. 318, 123582. DOI: https://doi.org/h8fx

Munch, K., Zhang, T. (2016). A Comparison of Drop-In Diesel Fuel Blends Containing Heavy Alcohols Considering both Engine Properties and Global Warming Potentials. SAE Technical Paper 2016-01-2254. DOI: https://doi.org/gbn48s

Nour, M., Nada, S., Li, X. (2022). Experimental study on the combustion performance of a stationary CIDI engine fueled with 1-heptanol-diesel mixtures. Fuel. 312. DOI: https://doi.org/nj94

Nyerges, Á., Zöldy, M. (2020). Verification and comparison of nine exhaust gas recirculation mass flow rate estimation methods. Sensors. 20(24), 7291. DOI: https://doi.org/f9wg

Nyerges, Á., Zöldy, M. (2023). Ranking of four dual loop EGR modes. Cognitive Sustainability. 2(1). DOI: https://doi.org/gr4s8r

Pastor, J., V., García, A., Micó, C., Lewiski, F. (2020). An optical investigation of Fischer–Tropsch diesel and Oxymethylene dimethyl ether impact on combustion process for CI engines. Applied Energy. 260, 114238. DOI: https://doi.org/nj95

Pélerin, D., Gaukela, K., Härtl, M., Jacob, E., Wachtmeister, G. (2020). Potentials to simplify the engine system using the alternative diesel fuels oxymethylene ether OME1 and OME3−6 on a heavy-duty engine. Fuel. 259, 116231. DOI: https://doi.org/h8f5

Prentice, I. C., Farquhar, G. D., Fasham, M. J. R., Goulden, M. L., Heimann, M., Jaramillo, V. J., Kheshgi, H. S., Le Quéré, C., Scholes, R. J., Wallace, D. W., et al. (2001). The carbon cycle and atmospheric carbon dioxide. In IPCC: Climate Change: The Scientific Basis, Intergovernmental Panel on Climate Change. 183–238. URL: https://www.ipcc.ch/site/assets/uploads/2018/02/TAR-03.pdf (accessed on 12 December 2023).

Preuß, J., Munch, K., Denbratt, I. (2021). Performance and emissions of renewable blends with OME3-5 and HVO in heavy duty and light duty compression ignition engines. Fuel. 303, 121275. DOI: https://doi.org/gmf4sj

Rahimi Boldaji, M., Sofianopoulos, A., Mamalis, S., Lawler, B. (2018). Effects of Mass, Pressure, and Timing of Injection on the Efficiency and Emissions Characteristics of TSCI Combustion with Direct Water Injection. SAE Technical Paper 2018-01-0178. DOI: https://doi.org/m5v4

Singh, A. P., Agarwal, A. K. (2012). Combustion characteristics of diesel HCCI engine: An experimental investigation using external mixture formation technique. Applied Energy. 99, 116–125. DOI: https://doi.org/f3995n

Singh, A. P., Agarwal, A. K. (2018). Low-Temperature Combustion: An Advanced Technology for Internal Combustion Engines. In: Srivastava, D., Agarwal, A., Datta, A., Maurya, R. (eds). Advances in Internal Combustion Engine Research. Energy, Environment, and Sustainability. Springer, Singapore. DOI: https://doi.org/gjjp9t

Virt, M., Arnold, U. (2022). Effects of Oxymethylene Ether in a Commercial Diesel Engine. Cognitive Sustainability, 1(3). DOI: 10.55343/cogsust.20

Virt, M., Nyerges, Á. (2023). Artificial intelligence based simulation of different EGR modes. 2nd International Conference on Cognitive Mobility (COGMOB), Budapest, Hungary. 149–154.

Virt, M., Zöldy, M. (2024a). Compatibility Issues of Oxymethylene Ether with Fluorocarbon Rubber Sealings, 6th Global Power, Energy and Communication Conference (GPECOM), Budapest, Hungary. 316–321. DOI: https://doi.org/nj96

Virt, M., Zöldy, M. (2024b). Enhancing the Viability of a Promising E-Fuel: Oxymethylene Ether–Decanol Mixtures. Energies. 17(6), 1348, DOI: https://doi.org/nj97

Virt, M., Zöldy, M. (2024c). Realization of Low Temperature Combustion in an Unmodified Diesel Engine. Cognitive Sustainability. 3(2). DOI: https://doi.org/nj98

Wicke, B., Verweij, P., Van Meijl, H., Van Vuuren, D. P., Faaij, A. P. (2012). Indirect land use change: Review of existing models and strategies for mitigation. Biofuels, 3, 87–100. DOI: https://doi.org/bfwsc8

Wojcieszyk, M., Kroyan, Y., Kaario, O., Larmi, M. (2023). Prediction of heavy-duty engine performance for renewable fuels based on fuel property characteristics., Energy. 285, 129494, DOI: https://doi.org/nj99

Yanowitz, J., Ratcliff, M. A., McCormick, R. L., Taylor, J. D., Murphy, M. J. (2014). Compendium of Experimental Cetane Numbers. National Renewable Energy Laboratory. URL: https://www.nrel.gov/docs/fy17osti/67585.pdf (accessed on 12 July 2024).

Yin, X., Li, Z., Yang, B., Sun, T., Wang, Y., Zeng, K. (2021). Experimental study of the combustion characteristics prediction model for a sensor-less closed-loop control in a heavy-duty NG engine. Fuel. 300, 120945. DOI: https://doi.org/gjwff5

Zeldovich, Y. B. (1946). The oxidation of nitrogen in combustion and explosions. Acta Physicochem., 21, 577–628.

Zöldy M. (2007). Bioethanol-biodiesel-diesel oil blends effect on cetane number and viscosity. 6th International Colloquium Fuels 2007, Technische Akademie Esslingen.