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Abstract 

Driving assistance systems and even autonomous driving have and will have an important role in sustainable mobility 

systems. Traffic situations where participants’ cognitive levels are different will cause challenges in the long term. When a 

pedestrian crosses the road, an autonomous vehicle may need to navigate safely while maintaining its desired speed. 

Achieving this involves using a predictive model to anticipate pedestrian movements and a strategy for the vehicle to adjust 

its speed proactively. This research combined model-based predictive control (MPC) with a social-force model (SFM) to 

effectively control the autonomous vehicle’s longitudinal speed. A genetic algorithm (GA) was also integrated into the 

approach to address the optimisation problem. A comparison between the proposed approach (MPC-GA) and the 

conventional MPC technique proved the outperformance of MPC-GA. 
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1. Introduction 

As the number of vehicles continues to rise, so does the potential for increased risks involving road users. Different types 

of accidents occur worldwide with varying intensities. However, the riskiest of them is vehicle–pedestrian accidents. The 

combined system of human and artificial intelligence-supported vehicles is relevant in most mobility fields. Pedestrians in 

the street are vulnerable to a high risk of fatal accidents when encountering vehicles.  Various factors, such as age 

concentration, contribute to this vulnerability. The number of accidents involving pedestrians and vehicles is surging 

worldwide. Particularly in driving areas with no controlling traffic signs or when pedestrians illegally cross the streets, it 

becomes crucial to safeguard and protect these insecure commuters. 

According to the Centers for Disease Control and Prevention, 3700 people die daily, and millions of people around the 

world have died in road accidents (CDC, 2023). This concerning number highlights the urgency to address and diminish the 

number of future collisions of this kind. However, places without safety precautions, such as unsignalized streets and 
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uncontrolled crosswalks, are more prone to see such fatalities. Another fact is that most pedestrian accidents happen close 

to where the victim lives, making residential neighbourhoods riskier.  

Autonomous vehicles (AV) have become a breakthrough technology (Zöldy et al., 2020). AVs are classified into five 

levels based on their level of automation. While most studies have focused on the problem of path planning (Hegedüs et al., 

2017) and (Cao and Zoldy, 2022), it is imperative to investigate the ability of AVs’ communication with road users and their 

potential to eliminate human driver’s errors. To ensure safety, AVs are expected to drive cautiously around pedestrians, 

which can encourage pedestrians to engage in careless behaviours like stepping onto the road, forcing AVs to slow down 

and yield. Hence, inspecting the interaction between AV and pedestrians is required to ensure that pedestrians cross the road 

safely. 

Several challenging opportunities are open in the vehicle-to-pedestrian (V2P) interaction. The most critical of them is to 

model the behaviour of pedestrian motion when crossing the road. The key is to define AV motion planning. Therefore, the 

next section 2 provides background information and reviews previous research about pedestrian and AV interaction. Then, 

the methods and data employed in our approach are thoroughly explained in Sections 3 and 4, respectively. Finally, 

parameters, settings, findings, and the overall conclusion are presented. 

We seek to contribute meaningfully to existing research in this area through our study. The key contributions of this paper 

are as follows: 

• Apply MPC to the AV and pedestrian road crossing scenario with real-time optimisation using the genetic algorithm 

for tuning MPC problems. 

• Improvements were made to the genetic algorithm’s parameters, including crossover rate, mutation rate, and the 

incorporation of roulette wheel selection and elitism to enhance its overall performance. 

2. Related works 

This section presents the most relevant domains and research results in pedestrian movement modelling, autonomous 

vehicle motion planning and available modelling and decision-making technologies. 

2.1 Residential areas: accidents prone zones 

Residential areas, usually referred to as residential neighbourhoods or communities, are distinguished by their principal 

function as places for habitation. Compared to major thoroughfares, these regions often have a network of streets with lower 

traffic densities and slower speed limits. Moreover, residential districts are known for their combination of pedestrian and 

vehicular traffic, which includes neighbourhood commuters, walkers, and children at play. 

A thorough investigation (Law, 2020) revealed some elements contributing to why residential areas are more vulnerable 

to such risk. The increasing frequency of commuting, speeding, and distracted driving are a few contributing causes. Other 

causes include underage driving, unmanaged highways, and a lack of standard traffic signals. Therefore, several studies 

recommended imposing a default speed limit in residential areas, such as a speed restriction of 20 mph (32 km/h) as the 

International Transport Forum recommended, and 30 km/h, according to Kloth (2018). 

2.2 Autonomous vehicles 

Besides having the potential to enhance sustainability through shared mobility, lower fuel consumption, and better driving 
patterns, increasing the cognitive level of vehicles leads to increased mobility and safety. Autonomous vehicles can lead the 
way towards pedestrian safety and efficiency on our roads. Connecting driving support systems and vehicles also increases 
safety for other mobility participants. The safety of motorcyclists, one of the most vulnerable, can also be greatly increased 
by, among other things, increasing the use of communication systems (Zöldy, 2023).  

According to Palmeiro et al. (2018), it is anticipated that autonomous vehicles will help decrease the occurrence of 
accidents. This projection is based on their ability to replace fallible human drivers and navigate the road network with 
enhanced safety. Self-driving cars are a revolutionary technological advancement in the automotive industry. With advanced 
sensors and artificial intelligence algorithms, these vehicles can operate on roads without human intervention (Torok and 
Pauer, 2022). 
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2.3 Social force model 

One of the most popular approaches to pedestrian behaviour modelling is physics-based models. Hence, several methods 
have been used to simulate the behaviour of pedestrians towards autonomous vehicles, such as the social force model (SFM). 
This method is a widely used technique for simulating pedestrians, which was first introduced by Helbing and Molnar (1998) 
to model crowd behaviour in evacuation analysis. The resultant force of a pedestrian is the combination of the psychological 
and the physical force. Psychological force is used to describe the social properties of the pedestrian. In collision and friction, 
physical force takes effect (Zhou et al., 2021). These models consider “physical” and “social” forces acting on the agent. 
Based on this, an agent’s movement is driven by a combination of all the forces acting on it at each time step. The basis of the 
model relied on three main collections of forces acting on an agent: an attracting force drawing the agent towards their goal, 
a repulsive force away from each agent in the scene, and repulsive forces from all walls and borders in the environment. The 
motion resulting from the sum of these forces was shown to model human movements in their presented scenarios accurately. 

Several authors have studied the V2P interaction in varied scenarios using different approaches. A recent study by 
Prédhumeau et al. (2022) investigated V2P interaction using SFM and a decision model that predicts such interactions. The 
simulation was done in controlled experiments in a parking lot at The Ohio State University. Another study by Zeng et al. 
(2014) analysed pedestrian behaviour at a signalised intersection using the modified social force theory. 

In an article by Rashid et al. (2022), an interaction framework between AV and pedestrians was established by employing 
a rule-based social force model to replicate pedestrian movement during road crossings. Similarly, a modified SFM was 
suggested for pedestrian crossing by Ren et al. (2014). In their study, the authors suggested some modifications to the SFM 
by applying the concepts of anisotropy and relative velocity. 

2.4 Model predictive control 

Notably, model predictive control (MPC) is a category of control algorithms utilising a dynamic process model to 
anticipate and enhance process performance (Henson, 1998). Yang and Özgüner (2019) studied unsignalized scenarios. The 
MPC method was used for longitudinal AV speed control and solved using a quadratic programming (QP) toolbox to control 
pedestrian crowds. The method was supplemented and compared with a proportional integral derivative (PID) controller. 
Likewise, SFM was used to predict pedestrian motion. Preliminary results of the research clearly demonstrated the benefits 
of the used MPC solution compared to the classical PID method. 

Furthermore, a similar study by Jayaraman et al. (2020) used a behavior-aware MPC model to regulate the AV to navigate 

safely in crosswalks, proving the efficiency of their suggested model. However, the solving process of NMPC (nonlinear 

model predictive control) is complex and harder than LMPC (linear model predictive control) and requires sophisticated 

algorithms. 

Besides, a recent paper by Pan et al. (2023) proposes a trajectory planning algorithm that combines A*, the artificial 

potential field method, and MPC with the addition of a dynamic obstacle potential field in the objective function of the MPC 

controller. This method enables vehicles to actively avoid collisions with pedestrians and improve traffic safety while 

maintaining smooth, constraining trajectories. 

Overall, the application of MPC is valuable for managing pedestrian-vehicle interactions and facilitating secure pedestrian 

crossings. Researchers have leveraged MPC to regulate autonomous vehicle behaviour when encountering pedestrians, 

particularly during road crossings. These studies showcase MPC’s potential to enhance AV safety and pedestrian interaction, 

ensuring smoother navigation and collision avoidance in crosswalks. 

2.5 Genetic algorithm 

Several studies investigated possible approaches to solve MPC optimisation efficiently. To this end, several algorithms 

have been proposed to solve the optimal control parameters of MPC, including the Genetic Algorithm (GA). GA is a family 

of search algorithms inspired by natural selection and genetics, which presents a solution to solve highly nonlinear 

optimisation problems (Vermuyten et al., 2018). 

Moreover, the optimisation of MPC using GA was tested and applied in various cases, such as lane keeping and 

autonomous vehicle parking. For instance, in Son et al. (2017), GA was used to tune the MPC parameters for a lane-keeping 

scenario. Results were promising and showed that the optimised MPC exhibited better performance than the human-tuned 

MPC. Similarly, as suggested by (Arrigoni et al. 2022), a novel genetic algorithm strategy was proposed to solve the NMPC 

problem for an autonomous vehicle path planner in an urban scenario. The simulation was conducted using the CarMaker 

environment, and the results demonstrated the successful performance of the model. The GA was crucial in preventing the 

solution from getting stuck in local minima. Additionally, the results confirmed the feasibility of a real-time controller 

implementation. 

In essence, GA-enhanced MPC improved performance in tasks such as autonomous vehicle control. Some strategies have 

been proposed to optimise MPC, including Particle Swarm Optimization (PSO) (Abdolahi et al., 2023; Kebbati et al., 2021).  
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3. Problem formulation 

For the test conducted in this study, a residential area was hypothesised, where streets are non-controlled with traffic lights, 
and the AV encounters an unsignalized crosswalk. Pedestrians nearing the crosswalk must make decisions regarding crossing 
or waiting for the AV to pass. To prioritise the safety and comfort of AV riders, the AV employs a pedestrian crossing model 
to predict pedestrian behaviour and plan its actions accordingly. 

 

Figure 1 Hypothetical scenario 
 

The proposed approach incorporates a GA to address the numerical solution of the optimal control problem (OCP) within 
the MPC framework. The method utilises the SFM to handle pedestrian motion while employing MPC to control and regulate 
the longitudinal speed of the autonomous vehicle. 

3.1 Motion Predictions: vehicle dynamics 

In our analysis, we consider the AV as a point mass. We focus on the longitudinal vehicle dynamics for crosswalk 

interactions and adopt a discrete-time kinematic model. Hence, our focus will be dedicated to longitudinal dynamics for the 

vehicle:  

𝑀𝑠̈(𝑡)+∝ 𝑠̇(𝑡) = 𝑢(𝑡),   (1) 

where  

s – is the longitudinal position,  

M – is the vehicle mass,  

∝ –is a drag coefficient 

𝑢(𝑡) – is the control action.  

Thus, let 𝑋 = [𝑥1, 𝑥2]𝑇=[𝑠, 𝑠̇]𝑇be the state vector which comprises the vehicle’s position and velocity, denoted by 𝑥1 and 𝑥2, 

respectively. Furthermore, by rewriting the equation into discretised vehicle dynamics using the Euler method, we have: 

𝑥(𝑘 + 1) =  𝐴𝑥(𝑘) + 𝐵𝑢(𝑘), (2) 

where  

𝐴 = [
1 𝛥𝑡

0 1 −
𝛼𝛥𝑡

𝑀

], 𝐵 = [
0
𝛥𝑡

𝑀

] ,  

𝛥𝑡 – represents the discretisation time step, 

𝑢(𝑘) – is the discretised control action.  

This process of moving from continuous time to discrete time using the Euler method was proposed by Yang and Özgüner 

(2019). 

3.2 Pedestrian motion prediction 

At time t, pedestrian motion can be iteratively obtained using the pedestrian dynamics in the equation below, from which 

the pedestrian state 𝑥p(𝑘) is derived. 

𝑥̈𝑝 =
ⅆ2𝑥𝜌

ⅆ𝑡2 = 𝑎 =
1

𝑚𝑃
𝑓𝑡𝑜𝑡𝑎𝑙  (3) 
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Furthermore, the model relies on the principles of social force. It is applied to predict the motion of pedestrians under 

the influence of vehicles. In this model, the movement of each pedestrian is represented as 𝑥𝑝 follows the 2D planar point-

mass Newtonian dynamics, influenced by a total force 𝑓𝑡𝑜𝑡𝑎𝑙, comprising various sub-forces (Yang and Özgüner, 2019). 

Where 𝑥𝑝 ∈ 𝑅4 represents the pedestrian state vector, mainly the positions (𝑥𝑃 , 𝑦𝑃)and velocities ( 𝑣𝑥 , 𝑣𝑦) in (x, y) axes. 

Whereas 𝑚𝑃 is the pedestrian’s mass and 𝑓𝑡𝑜𝑡𝑎𝑙 ∈ 𝑅2 is the total force. The velocities and acceleration are expressed as 

below:  

𝑥̇𝑝 = 𝑣𝑥  and 𝑦̇𝑝 = 𝑣𝑦 (4) 

𝑣̇𝑥 = 𝑎𝑥  and 𝑣̇𝑦 = 𝑎𝑦 (5) 

Hence, the acceleration is equal to: 𝑎𝑥 = 𝑥̈𝑥 and 𝑎𝑦 = 𝑥̈𝑦 (6) 

The total longitudinal force acting on the pedestrian is the sum of two main forces: the attraction force (or destination 

force), which drives the pedestrian toward their desired goal, and the repulsive force (or vehicle force), which repels the 

pedestrian from the vehicle. Hence, the total force is equal to: 

𝑓𝑡𝑜𝑡𝑎𝑙 = 𝑓ⅆ𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 + 𝑓𝑣𝑒ℎ𝑖𝑐𝑙𝑒  (7) 

3.3 Cost function design 

Based on the vehicle dynamics previously explained, the future state vector of the vehicle position 𝑥1(𝑘 + 𝑛) will be 

obtained. Likewise, the future pedestrian state 𝑥p(𝑘 + 𝑛) will be obtained from the previously mentioned pedestrian 

dynamics. 

A safety requirement is incorporated into the MPC constraint architecture to guarantee the safe functioning of the 

autonomous vehicle and avoid any potential collisions with persons crossing the road. This standard stipulates that, about 

the longitudinal position of the vehicle, a specific distance designated as 𝑑𝑠𝑎𝑓𝑒” must be maintained between the autonomous 

vehicle and the pedestrian. To maintain this defined 𝑑𝑠𝑎𝑓𝑒” throughout N future steps: 

|𝑥1(𝑘 + 𝑛) - 𝑥𝑝(𝑘 + 𝑛) | >  𝑑𝑠𝑎𝑓𝑒  (8) 

This formula ensures that the projected distance between the vehicle’s future position and the pedestrian’s anticipated 

location stays within the allowed safety margin. Also, limitations are placed on the velocity, control action and the rate of 

change of control action due to the physical constraints of the vehicle. Therefore, the following constraints will be 

considered. For ∀ⅈ = 𝑘 + 1, … . . , 𝑘 + 𝑁, we have: 

𝑣𝑚𝑖𝑛 < 𝑣(𝑘 + 𝑛) ≤ 𝑣𝑚𝑎𝑥  ∀ 𝑛 ∈ {1,2, … . . , 𝑁𝑝} (9) 

|𝑢(𝑘 + 𝑛)| ≤ 𝑢𝑚𝑎𝑥  ∀ 𝑛 ∈ {0,1,2, … . . , 𝑁𝑝 − 1} (10) 

|𝛥𝑢(𝑘 + 𝑛)| ≤ 𝛥𝑢𝑚𝑎𝑥  ∀ 𝑛 ∈ {0,1,2, … . . , 𝑁𝑝 − 1} (11) 

The MPC’s final objective is to identify the control actions 𝑈 = [𝑢(𝑘), 𝑢(𝑘 + 1), … . . , 𝑢(𝑘 + 𝑁 − 1)]𝑇 that will ensure 

that the vehicle meets state and safety constraints. Considering this, the cost function is referred to as follows: 

𝑈 ∗= 𝑎𝑟𝑔 𝑚𝑖𝑛 𝑈  ∑ 𝑤𝑣
𝑁𝑃
𝑛=0 (𝑣(𝑘 + 𝑛) −  𝑣0,𝑣𝑒ℎ )

2
+ ∑ 𝑤𝑢

𝑁𝑃−1
𝑛=0 (𝑢(𝑘 + 𝑛))

2
 (12) 

 

where 𝑊𝑢 and 𝑊𝑣 are the weights of the cost of the velocity and control, respectively. Subject to the previous constraints (2), 

(7), (8), (10) and (11). 
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Figure 2 MPC algorithm 

3.4 Model predictive control based on genetic algorithm 

The genetic algorithm searches for the optimal control sequences that optimise the cost function and comply with the 

model constraints. The following sections explain the optimisation process. 

3.4.1 Encoding 

Each chromosome (𝑐𝑖 = {𝑔𝑒𝑛𝑒1,.......,𝑔𝑒𝑛𝑒𝑁𝑐−1,}) in the population constitutes a control action [𝑢(𝑡), 𝑢(𝑡 +

1), . . . . . , 𝑢(𝑡 + 𝑁 − 1)], with 𝑖 = 1, population size. The selection of each chromosome is done within the defined range of 

control interval [𝑢min, 𝑢max] and with {𝛥𝑖𝑢(𝑡 + 𝑗), 𝑗 = 1, . . . . , 𝑁𝑐 − 1} not exceeding the limit 𝛥𝑢𝑚𝑎𝑥.  

 

Figure 3 Control input 
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3.4.2 Initialisation 

• Begin by generating an initial control value within the defined constraint space. 

• If the individual adheres to the constraints and terminal constraints, include it in the initial population. 

• Continue to iterate through the steps mentioned above until a total of individuals reaches the population 

size that has been selected. 

3.4.3 Evaluation and Selection 

• The fitness value for each chromosome is defined as: 
1

(1+𝐽)
  (13) 

• With J being the value of the cost function of the MPC problem. 

3.4.4 Genetic operators 

Roulette Wheel Selection 

The selection strategy used in this paper utilises the roulette selection algorithm. As a result, individuals with higher 

fitness levels are more likely to be selected and retained during the evolutionary iteration process. If an individual is denoted 

as i and its fitness is ft, the probability that it will be selected is expressed as:  

𝑃𝑡 =
𝑓𝑡

∑ 𝑓𝑡
𝑛
𝑡=1

  (14) 

Mutation 

Genes are chosen based on their likelihood of mutation. They are subsequently replaced at random while adhering to 

permissible boundaries defined by control signals |𝑢(ⅈ)| ≤ 𝑢𝑚𝑎𝑥  and limits on the change in control signals |𝛥𝑢(ⅈ)| ≤
𝛥𝑢𝑚𝑎𝑥 . 

Crossover 

This approach creates two offspring while ensuring that the control signals remain within acceptable constraints. 

Elitism 

The elite-preservation strategy is implemented to ensure the current population's quality and the MPC algorithm's 

steadiness. Where the top 1% of high-fitness individuals in the population are retained. 

Termination condition 

Repeating the preceding step and entire calculation at subsequent control interval k+1. 

 

 Figure 4 GA flowchart 
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Figure 5 Model diagram 

 

Finally, the overall algorithm is stated as follows: 

 

 

Figure 6 MPC-GA algorithm 
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4. Parameter settings 

To conduct the simulation, CVXPY, a Python-based modelling language for convex optimisation, was chosen to solve 

the optimisation problem (Diamond and Boyd, 2016). A computer equipped with an Intel Core i5-1135G7 CPU, 8GB of 

RAM, running on the Windows 11 operating system, and employing Python programming language was used. The tables 

below contain the values chosen for the parameters based on the literature found in the work of (Yang and Özgüner, 2019) 

and (Jayaraman et al., 2020).  

Table 1 MPC parameters 

Symbol Value Unit 

Vehicle mass M 2000 Kg 

Minimum control input  𝒖𝒎𝒊𝒏  -7 m/𝑠2 

Maximum control input 𝒖𝒎𝒂𝒙 7 m/𝑠2  

Minimum control input change 𝜟𝒖𝒎𝒊𝒏 -5 m/𝑠3 

Maximum control input change 𝜟𝒖𝒎𝒂𝒙 5 m/𝑠3 

Drag coefficient 𝜶 100 - 

Minimum speed 𝒗𝒎𝒊𝒏 0 m/s 

Maximum speed 𝒗𝒎𝒂𝒙 16 m/s 

Safety distance 𝒅𝒔𝒂𝒇𝒆 5 M 

Prediction horizon 𝑵𝒑𝒓𝒆𝒅 15 - 

Weight on the control 𝒘𝒗 1 - 

Weight on control Rate 𝒘𝒖 1 - 
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Table 2 GA parameters 

GA parameter Setting used 

Population size (default) 100 

Crossover rate (default) 0.9 

Mutation rate(default) 0.1 

Elite count 1% 

Maximum number of generations(default) 100 

 

 

The default value for the number of generations is set to 100, a choice aligned with previous studies (Ahmadpour et al., 

2021; Ramasamy et al., 2019; Mohammadi et al., 2018). 

 
Table 3 SFM parameters 

Symbol Value Unit 

Maximum pedestrian speed   𝒗𝒑,𝒎𝒂𝒙 2.5 m/s 

Maximum pedestrian acceleration 𝒂𝒑,𝒎𝒂𝒙 5 m/𝑠2 

Pedestrian mass 𝒎𝒑 80 Kg 

𝒌𝒅𝒆𝒔𝒕𝒊𝒏𝒂𝒕𝒊𝒐𝒏 300 - 

𝑨𝒗𝒆𝒉𝒊𝒄𝒍𝒆 200 - 

B 2.6 - 

 

5 Results and analysis 

For crossover and mutation rates, we used 0.9 and 0.1 at the beginning of the simulation, respectively. Following the 

guidelines provided by most sources ((Abdolahi et al., 2023; Kebbati et al., 2021; Vermuyten et al., 2018; Arrigoni et al., 

2022; Hang et al., 2021), we used (0.7, 0.3) and (0.6, 0.4) as crossover and mutation rates, respectively. Subsequently, we 

manually adjusted these rates to obtain the optimal combination based on CPU time usage, aiming for computational 

efficiency across 200 simulation runs. Computer systems require energy for almost all computational tasks involved in 

running algorithms, which adds to their carbon footprint. Consequently, it highlights how important it is to maximise 

computational efficiency to minimise environmental impact and promote sustainable computing practices. 
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5.1 Step 1: crossover and mutation rates 

Step 1 shows the crossover and mutation rates based on GA rate tuning. 

Table 4 GA rate tuning 

 

MPC-GA 

 CPU 

(Crossover, Mutation) 0.9 0.1 0.7 0.3 0.6 0.4 

Average 

 

75.3611 74.7704 81.7025 

Hence, based on the results above, the crossover and mutation rates used are 0.7 and 0.3, respectively. 

Now, tune the number of generations using different settings: [20, 30, 40, 50, 100]. We kept the population size fixed to 

its default value (100) and tested the above combinations for 200 simulation runs. 

5.2 Step 2: generations number 

The CPU time gradually rises with the number of generations. As expected, given that the algorithm runs through 

additional cycles to evolve a solution, more generations demand more processing power. For every 100 generations, the 

CPU time rises from 64.087 seconds to 74.770 seconds. 

However, the standard deviation (SD) does not follow a strictly linear pattern. For instance, the standard deviation after 

20 generations is 3.402, which is relatively high and shows large variations in CPU time across runs. However, the value of 

SD significantly drops to 1.159 when the number of generations rises to 30, indicating a more steady and reliable 

performance. After 40 and 50 generations, it rises once more while staying in a modest range.  

 

Figure 6 Generation number tuning 

 

In summary, selecting a value with reduced variability, as indicated by a smaller standard deviation, is advantageous. 

This choice leads to computational performance that is more predictable and consistent, a crucial aspect in maintaining 

system reliability. Moreover, although running the algorithm with more generations takes longer, the results are more 

reliable, and the time required for each run is less variable. Hence, the selected number of generations is 30. 

5.3 Step 3: population size 

The findings show that computational efficiency is significantly affected by the population size. With values of 78.976 

seconds and 78.939 seconds, respectively, the average CPU times are particularly close for population sizes 20 and 30. The 

average CPU time, however, noticeably rises to 87.957 seconds and 87.673 seconds, respectively, when the population 

reaches 40 and 50. This shows that larger populations have longer average calculation times because they use more 

processing resources. 
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Figure 7 Population size tuning 

 

Moreover, the standard deviations, 0.592 and 0.580 for population sizes 20 and 30, respectively, are very low, suggesting 

that the CPU time is largely constant and stable between runs. Nevertheless, the standard deviation significantly rises to 

5.828 and 6.163, respectively, as the population grows to 40 and 50, respectively. This implies more variation in the 

computation time across various runs for larger populations. 

In summary, the best option is to use a smaller population size (30), as it ensures stable and consistent performance, 

along with lower average CPU times and standard deviations. This approach reduces unnecessary computational burden, 

maximises resource efficiency, and lowers energy consumption. As a result, it reduces the carbon footprint associated with 

prolonged algorithmic processing (IBM Cloud Education, 2023). This result will be very useful, especially when dealing 

with more complex scenarios and processes that demand higher computational resources. 

Table 5 Tuned GA parameters 

Tuned Parameters 

Crossover 

Rate 

Mutation 

rate 

Number of 

Generations 

Population 

Size 

0.7 0.3 30 30 

6 Comparison between MPC versus MPC-GA 

6.1 Quantitative Assessment: RMSE Analysis and Computational Efficiency 

Then, a final comparison between the two models using the best combination of GA parameters was done. Furthermore, 

Total time and root mean squared error (RMSE) were compared to evaluate the performance and efficiency. The total average 

RMSE over all cycles was calculated as follows:  

RMSE=
1

𝑛
[∑ (𝑦𝑖 − 𝑦̂)2𝑛

𝑖=1
]

1

2 (14) 
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Table 6 MPC versus MPC-GA performance evaluation 

 MPC MPC-

GA 

Average elapsed CPU time (s) 89.21 62.71 

Total average RMSE for a control 

method 

0.65 0.32 

 

Numerous simulation runs were conducted, and the results consistently showed that MPC-GA had lower RMSE than 

MPC and significantly reduced CPU processing time. MPC-GA performed better in percentage terms, with an RMSE 

roughly 50.76% lower (0.32 RMSE) than the MPC. These results confirm the superior performance of MPC-GA and show 

that it provides a more efficient solution, ultimately resulting in improved overall performance. Simultaneously, MPC-GA 

contributes to sustainability by adhering to sustainable computing principles outlined by Lannelongue et al. (2023) by 

reducing processing requirements for running algorithms, consequently minimising energy consumption and resource 

utilisation. 

 

Figure 8 Computation time comparison between MPC and MPC-GA 

 

Furthermore, we examined a comparison analysis between MPC versus MPC-GA, using different prediction horizons, 

to conduct a more thorough evaluation of the performance of the two models. The outcomes of this comparative assessment 

show that, regarding time efficiency, MPC-GA outperformed the traditional MPC strategy. When compared to pure MPC, 

MPC-GA showed much shorter execution times. The percentage improvements in CPU time were observed to be 20%, 29%, 

11%, and 13% for prediction horizons of 10, 15, 20, and 30, respectively. This finding highlights how MPC-GA’s superior 

optimisation capabilities can be used to boost overall operational effectiveness. 

6.2 Simulation-based evaluation 

The evaluation of the simulation results, which utilised Model Predictive Control enhanced with Genetic Algorithm 

(MPC-GA), reveals a promising outcome. Notably, during simulations involving pedestrian interactions, the autonomous 

vehicle demonstrated a significant capacity for ensuring safety. 
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Figure 9 MPC-GA simulation result 

 

When a pedestrian started a crossing, the vehicle promptly and effectively came to a complete stop (𝑽𝒗𝒆𝒉 = 𝟎 m/s), 

showcasing the robustness of the MPC-GA system. These results underscore the potential of MPC-GA in real-world 

scenarios, illustrating its ability to prioritise safety and successfully manage interactions with pedestrians. This also 

demonstrated its robust safety measures, ensuring pedestrians' safety during vehicle interactions. Notably, the vehicle 

consistently stopped at a safe distance in front of the pedestrian, emphasising its safety commitment. 

 
Figure 10 MPC-GA simulation result 

 

We can see no collision between the AV and the pedestrian using MPC. Nevertheless, the AV failed to attempt to stop 

at a safe distance when the pedestrian was crossing the street. Rather, the AV decreases its speed from 14.41 MPH to 9.23 

MPH. In addition, the AV accelerates once more as soon as the pedestrian crosses the driving lane. 

6.3 Comparison of Control Actions and state evolution 

It is crucial to highlight the significant disparity in control strategies between the two approaches, as shown in the figure 

below. The control actions employed by MPC-GA displayed notable fluctuations, signifying an ongoing optimisation 

process involving actively fine-tuning control instruction. This dynamic behaviour played a pivotal role in achieving the 

abrupt stop. On the other hand, the smoothness of the MPC control actions implied a more cautious and conservative 
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approach, emphasising gradual speed reduction to enhance passenger comfort. Thus, the MPC-GA approach emphasised 

precision and safety, leading to a more sudden stop when required. Hence, our analysis reveals that the choice between 

MPC-GA and MPC involves a trade-off between speed smoothness and precision. While MPC offers a consistent and 

comfortable speed profile for passengers, MPC-GA demonstrates a more dynamic behaviour in speed control. The volatility 

in speed observed in the MPC-GA strategy directly results from the real-time optimisation process. It ensures that the vehicle 

can swiftly adapt to changing situations, such as pedestrians entering the crosswalk. 

 
 

Figure 11 Graphical results comparison of MPC and MPC-GA results 

7 Conclusion and future work 

One of the most important steps toward sustainability, particularly in promoting sustainable mobility, is the integration 

of autonomous vehicles into transportation networks. In addition to transforming transportation, these cars can protect 

pedestrian safety at crosswalks. This paper’s investigation is driven by an innovative emphasis on pedestrian safety and 

sustainability, two essential aspects of contemporary urban living. To achieve this overarching goal, the paper explores the 

effectiveness of MPC in ensuring pedestrian safety and investigates the potential of integrating GA to optimise MPC for 

more robust safety outcomes. 

To assess pedestrian safety in this context, the SFM was employed, using Newton’s second law to simulate pedestrian 

motion. The study then systematically evaluated the effectiveness and efficiency of both MPC and MPC-GA in ensuring 

pedestrian safety. MPC was used to model the behaviour of the autonomous vehicle and its interaction with the crossing 

pedestrian through acceleration and deceleration. Additionally, GA was utilised to optimise the process of solving MPC. 

Specifically, genetic evolution was used to find the optimal control input in each iteration. The findings underscored the 

substantial advantages MPC-GA offers, with slightly lower execution times signalling enhanced computational efficiency, 

which is particularly valuable in complex control systems. The lower running times required in each iteration would reduce 

the need for energy use and, ultimately, more sustainable computing. 
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Furthermore, MPC-GA consistently reduced computing times across various prediction horizons, emphasising the 

efficacy of GA optimisation. This approach also significantly improved predictive accuracy, achieving control objectives 

more efficiently. Regarding the comparison between simulations, MPC and MPC-GA resulted in safe interactions, with no 

recorded collisions. However, MPC-GA exhibited a superior interaction response, wherein the autonomous vehicle yielded 

to pedestrians and came to a full stop when required, underlining an exceptional level of safety. In the case of local emission-

free drivetrain solutions like electric cars with increasing safety, it has an overall positive effect on sustainability. 

However, the study was conducted and limited to a simulated environment, thereby leaving the influence of real-world 

factors like unpredictable pedestrian behaviour and varying environmental conditions unaddressed. 

Additional research directions could involve investigating programming languages other than Python and evaluating 

their effects on computer performance, which would expand the study of sustainable computing techniques. Analysing the 

interactions between various language codes and algorithms may provide ways to maximise computing efficiency, aligning 

with sustainability objectives by reducing the amount of energy and resources used. Another improvement could be to test 

the scenario in a more complex road structure to investigate the robustness of MPC-GA to ensure pedestrian safety, which 

is crucial in sustainable mobility and contributes to smoother traffic flow. 
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